Citation: ZHAO Hao-Chuan, SONG Yang, GUO Xiao-Dong, ZHONG Ben-He, DONG Jing, LIU Heng. Effect of Precursor Ingredient Temperature on the Performance of LiFePO4 by Hydrothermal Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2347-2352. doi: 10.3866/PKU.WHXB20110905
-
We investigated LiFePO4 particles that were prepared by a hydrothermal reaction at different ingredient temperatures. The precursors and final LiFePO4 products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and elemental analysis. The results show that ingredient temperature had a significant effect on the color and characteristics of the LiFePO4 precursors. High purity Li3PO4 was obtained and the formation of Fe(OH)3 in the precursors was inhibited by controlling the ingredient temperature carefully. In addition well-crystalline and free Fe3+ LiFePO4 samples were synthesized, which greatly increased the discharge capacity of the LiFePO4 cathode materials. At an ingredient temperature of 30 °C the discharge specific capacity of the as-prepared sample was found to be 156 mAh·g-1 at 0.1C rate, 151 mAh·g-1 at 0.5C rate and it remained 127 mAh·g-1 even at a rate of 10C while the cycling retention rate was 99% after 20 cycles.
-
Keywords:
-
Lithium ion battery
, - Cathode,
- Hydrothermal method,
- LiFePO4,
- Temperature
-
-
-
[1]
(1) Amatucci, G. G.; Pereira, N.; Zheng, T.; Plitz, I.; Tarascon, J. M. J. Power Sources 1999, 81-82, 39.
-
[2]
(2) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Eletrochem. Soc. 1997, 144, 1188.
-
[3]
(3) Guo, X. D.; Liu, H.;Wu, D. Q; Zhong, B. H. Materials Review 2009, 23, 28.
-
[4]
[郭孝东, 刘恒, 吴德桥, 钟本和. 材料导报, 2009, 23, 28.]
-
[5]
(4) Wen, Y. X.; Zheng, M. P.; Tong, Z. F.; Su, H. F.; Xue, M. H. The Chinese Journal of Nonferrous Metals 2005, 15, 1436.
-
[6]
[文衍宣, 郑绵平, 童张法, 粟海锋, 薛敏华. 中国有色金属, 2005, 15, 1436.]
-
[7]
(5) Wu, L.;Wang, Z. X.; Li, X. H.; Li, L. J.; Guo, H. J.; Zheng, J. C.;Wang, X. J. Trans. Nonferrous Met. Soc. China 2010, 20, 814.
-
[8]
(6) Li, G. H.; Azuma, H.; Tohda, M. J. Eletrochem. Soc. 2002, 149, A743.
-
[9]
(7) Hua, N;Wang, C. Y.; Kang, X. Y.;Wumair, T.; Han, Y. J. Alloy. Compd. 2010, 503, 204.
-
[10]
(8) Zhang, M.; Jiao, L. F.; Yuan, H. T.;Wang, Y. M.; Guo, J.; Zhao, M.;Wang,W.; Zhou, X. D. Solid State Ionics 2006, 177, 3309.
-
[11]
(9) Chen, Y.;Wang, Z. L.; Yu, C. Y.; Xia, D. G.;Wu, Z. Y. Acta Phys. -Chim. Sin. 2008, 24, 1498.
-
[12]
[陈宇, 王忠丽, 于春洋, 夏定国, 吴自玉. 物理化学学报, 2008, 24, 1498.]
-
[13]
(10) Lu, J. B.; Tang, Z. L.; Zhang, Z. T.; Jin, Y. Z. Acta Phys. -Chim. Sin. 2005, 21, 319.
-
[14]
[卢俊彪, 唐子龙, 张中太, 金永拄. 物理学报, 2005, 21, 319.]
-
[15]
(11) Zhang, Q.;Wang, S. M.; Zhou, Z. F.; Ma, G. L.; Jiang,W.W.; Guo, X. S.; Zhao, S. Solid State Ionics 2011, 191, 40.
-
[16]
(12) Guo, X. D.; Zhong, B. H.; Liu, H.;Wu, D. Q.; Tang, Y.; Tang, H. J. Eletrochem. Soc. 2009, 156, A787.
-
[17]
(13) Yu, H. M.; Zheng,W.; Cao, G. S.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25, 2186.
-
[18]
[余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25, 2186.]
-
[19]
(14) Konarova, M.; Taniguchi, I. J. Power Sources 2010, 195, 3661.
-
[20]
(15) Kim, H. J.; Kim, J. M.; Kim,W. S.; Koo, H. J.; Bae, D. S.; Kim, H. S. J. Alloy. Compd. 2011, 509, 5662.
-
[21]
(16) Su, C.; Lu, G. Q.; Xu, L. H.; Zhang, C.; Ma, C. A. Acta Phys. -Chim. Sin. 2011, 27, 609.
-
[22]
[苏畅, 陆国强, 徐立环, 张诚, 马淳安. 物理化学学报, 2011, 27, 609.
-
[23]
(17) Wu, D. Q.; Zhong, B. H.; Xu, R.; Guo, X. D.; Liu, H.; Song, Y.; Tang, Y. New Chemical Materials 2010, 38, 37.
-
[24]
[吴德桥, 钟, 徐瑞, 郭孝东, 刘恒, 宋杨, 唐艳. 化工新型材料, 2010, 38, 37.]
-
[25]
(18) Jaewon, L.; Amyn, S. T. Journal of Supercritical Fluids 2005, 35, 83.
-
[26]
(19) Zhang, C. H.; Huang, X.; Yin, Y. S.; Dai, J. H.; Zhu, Z. B. Ceramics International 2009, 35, 2979.
-
[27]
(20) Tajimi, S.; Ikeda, Y.; Uematsu, K.; Toda, K.; Sato, M. Solid State Ionics 2004, 175, 287.
-
[28]
(21) Ou, X. Q.; Xu, S. Z.; Liang, G. C.;Wang, L.; Zhao, X. Sci. China Ser. E-Tech. Sci. 2009, 52, 264.
-
[29]
(22) Recham, N.; Armand, M.; Tarascon, J. M. C. R. Chimie 2010, 13, 106.
-
[30]
(23) Zhuang, D. G.; Zhao, X. B.; Cao, G. S.; Mi, C. H.; Tu, J.; Tu, J. P. The Chinese Journal of Nonferrous Metals 2005, 15, 2034.
-
[31]
[庄大高, 赵新兵, 曹高劭, 米常焕, 涂健, 涂江平. 中国有属学报, 2005, 15, 2034.]
-
[32]
(24) Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119-121, 252.
-
[33]
(25) Islam, M. S.; Driscoll, D. J.; Fisher, CA. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085.
-
[34]
(26) Liu, J. L.; Jiang, R. R.;Wang, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.
-
[35]
(27) Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97-98, 498.
-
[1]
-
-
[1]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[2]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[6]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[9]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[10]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[11]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[12]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[13]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[14]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[15]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[16]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[17]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[18]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[19]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[20]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[1]
Metrics
- PDF Downloads(1163)
- Abstract views(3080)
- HTML views(5)