Citation: ZHAO Hao-Chuan, SONG Yang, GUO Xiao-Dong, ZHONG Ben-He, DONG Jing, LIU Heng. Effect of Precursor Ingredient Temperature on the Performance of LiFePO4 by Hydrothermal Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2347-2352. doi: 10.3866/PKU.WHXB20110905 shu

Effect of Precursor Ingredient Temperature on the Performance of LiFePO4 by Hydrothermal Method

  • Received Date: 25 April 2011
    Available Online: 4 July 2011

    Fund Project: 国家科技支撑计划(2007BAQ01055)资助项目 (2007BAQ01055)

  • We investigated LiFePO4 particles that were prepared by a hydrothermal reaction at different ingredient temperatures. The precursors and final LiFePO4 products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), and elemental analysis. The results show that ingredient temperature had a significant effect on the color and characteristics of the LiFePO4 precursors. High purity Li3PO4 was obtained and the formation of Fe(OH)3 in the precursors was inhibited by controlling the ingredient temperature carefully. In addition well-crystalline and free Fe3+ LiFePO4 samples were synthesized, which greatly increased the discharge capacity of the LiFePO4 cathode materials. At an ingredient temperature of 30 °C the discharge specific capacity of the as-prepared sample was found to be 156 mAh·g-1 at 0.1C rate, 151 mAh·g-1 at 0.5C rate and it remained 127 mAh·g-1 even at a rate of 10C while the cycling retention rate was 99% after 20 cycles.
  • 加载中
    1. [1]

      (1) Amatucci, G. G.; Pereira, N.; Zheng, T.; Plitz, I.; Tarascon, J. M. J. Power Sources 1999, 81-82, 39.

    2. [2]

      (2) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Eletrochem. Soc. 1997, 144, 1188.  

    3. [3]

      (3) Guo, X. D.; Liu, H.;Wu, D. Q; Zhong, B. H. Materials Review 2009, 23, 28.

    4. [4]

      [郭孝东, 刘恒, 吴德桥, 钟本和. 材料导报, 2009, 23, 28.]

    5. [5]

      (4) Wen, Y. X.; Zheng, M. P.; Tong, Z. F.; Su, H. F.; Xue, M. H. The Chinese Journal of Nonferrous Metals 2005, 15, 1436.

    6. [6]

      [文衍宣, 郑绵平, 童张法, 粟海锋, 薛敏华. 中国有色金属, 2005, 15, 1436.]

    7. [7]

      (5) Wu, L.;Wang, Z. X.; Li, X. H.; Li, L. J.; Guo, H. J.; Zheng, J. C.;Wang, X. J. Trans. Nonferrous Met. Soc. China 2010, 20, 814.  

    8. [8]

      (6) Li, G. H.; Azuma, H.; Tohda, M. J. Eletrochem. Soc. 2002, 149, A743.

    9. [9]

      (7) Hua, N;Wang, C. Y.; Kang, X. Y.;Wumair, T.; Han, Y. J. Alloy. Compd. 2010, 503, 204.  

    10. [10]

      (8) Zhang, M.; Jiao, L. F.; Yuan, H. T.;Wang, Y. M.; Guo, J.; Zhao, M.;Wang,W.; Zhou, X. D. Solid State Ionics 2006, 177, 3309.  

    11. [11]

      (9) Chen, Y.;Wang, Z. L.; Yu, C. Y.; Xia, D. G.;Wu, Z. Y. Acta Phys. -Chim. Sin. 2008, 24, 1498.

    12. [12]

      [陈宇, 王忠丽, 于春洋, 夏定国, 吴自玉. 物理化学学报, 2008, 24, 1498.]

    13. [13]

      (10) Lu, J. B.; Tang, Z. L.; Zhang, Z. T.; Jin, Y. Z. Acta Phys. -Chim. Sin. 2005, 21, 319.

    14. [14]

      [卢俊彪, 唐子龙, 张中太, 金永拄. 物理学报, 2005, 21, 319.]

    15. [15]

      (11) Zhang, Q.;Wang, S. M.; Zhou, Z. F.; Ma, G. L.; Jiang,W.W.; Guo, X. S.; Zhao, S. Solid State Ionics 2011, 191, 40.  

    16. [16]

      (12) Guo, X. D.; Zhong, B. H.; Liu, H.;Wu, D. Q.; Tang, Y.; Tang, H. J. Eletrochem. Soc. 2009, 156, A787.

    17. [17]

      (13) Yu, H. M.; Zheng,W.; Cao, G. S.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25, 2186.

    18. [18]

      [余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25, 2186.]

    19. [19]

      (14) Konarova, M.; Taniguchi, I. J. Power Sources 2010, 195, 3661.  

    20. [20]

      (15) Kim, H. J.; Kim, J. M.; Kim,W. S.; Koo, H. J.; Bae, D. S.; Kim, H. S. J. Alloy. Compd. 2011, 509, 5662.  

    21. [21]

      (16) Su, C.; Lu, G. Q.; Xu, L. H.; Zhang, C.; Ma, C. A. Acta Phys. -Chim. Sin. 2011, 27, 609.

    22. [22]

      [苏畅, 陆国强, 徐立环, 张诚, 马淳安. 物理化学学报, 2011, 27, 609.

    23. [23]

      (17) Wu, D. Q.; Zhong, B. H.; Xu, R.; Guo, X. D.; Liu, H.; Song, Y.; Tang, Y. New Chemical Materials 2010, 38, 37.

    24. [24]

      [吴德桥, 钟, 徐瑞, 郭孝东, 刘恒, 宋杨, 唐艳. 化工新型材料, 2010, 38, 37.]

    25. [25]

      (18) Jaewon, L.; Amyn, S. T. Journal of Supercritical Fluids 2005, 35, 83.  

    26. [26]

      (19) Zhang, C. H.; Huang, X.; Yin, Y. S.; Dai, J. H.; Zhu, Z. B. Ceramics International 2009, 35, 2979.  

    27. [27]

      (20) Tajimi, S.; Ikeda, Y.; Uematsu, K.; Toda, K.; Sato, M. Solid State Ionics 2004, 175, 287.  

    28. [28]

      (21) Ou, X. Q.; Xu, S. Z.; Liang, G. C.;Wang, L.; Zhao, X. Sci. China Ser. E-Tech. Sci. 2009, 52, 264.  

    29. [29]

      (22) Recham, N.; Armand, M.; Tarascon, J. M. C. R. Chimie 2010, 13, 106.  

    30. [30]

      (23) Zhuang, D. G.; Zhao, X. B.; Cao, G. S.; Mi, C. H.; Tu, J.; Tu, J. P. The Chinese Journal of Nonferrous Metals 2005, 15, 2034.

    31. [31]

      [庄大高, 赵新兵, 曹高劭, 米常焕, 涂健, 涂江平. 中国有属学报, 2005, 15, 2034.]

    32. [32]

      (24) Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119-121, 252.

    33. [33]

      (25) Islam, M. S.; Driscoll, D. J.; Fisher, CA. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085.  

    34. [34]

      (26) Liu, J. L.; Jiang, R. R.;Wang, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.  

    35. [35]

      (27) Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97-98, 498.

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    17. [17]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(1163)
  • Abstract views(3131)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return