Citation: MIN Shi-Xiong, Lü ng-Xuan. Preparation of CdS/Graphene Composites and Photocatalytic Hydrogen Generation from Water under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2178-2184. doi: 10.3866/PKU.WHXB20110904 shu

Preparation of CdS/Graphene Composites and Photocatalytic Hydrogen Generation from Water under Visible Light Irradiation

  • Received Date: 22 April 2011
    Available Online: 4 July 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2007CB613305, 2009CB22003) (973) (2007CB613305, 2009CB22003) 国家高技术研究发展计划项目(863) (2009AA05Z117) (863) (2009AA05Z117)中国科学院太阳能行动计划(KGCX2-YW-390-1, KGCX2-YW-390-3)资助 (KGCX2-YW-390-1, KGCX2-YW-390-3)

  • CdS/graphene composite photocatalysts were prepared by photocatalytically reducing graphene oxide with CdS nanoparticles in an aqueous ethanol solution. The structure and photoelectrical properties of the resulted materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and transient photocurrent measurements. The photocatalytic activities of the CdS/graphene composites for hydrogen evolution were evaluated under visible light irradiation (λ≥420 nm). The results show that the graphene oxide can be efficiently reduced by the photogenerated electrons of CdS and thus CdS/graphene composite is formed and it shows strong interactions between CdS and graphene. Compared with CdS, the enhanced photocurrent generation and photocatalytic activity toward hydrogen evolution for the CdS/ graphene composite photocatalysts could be attributed to the ability of graphene to capture and transport electrons, and to promote charge separation.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Geim, A. K.; Novoselov, K. S. Nat. Mat. 2007, 6, 183.  

    3. [3]

      (3) Stoller, M. D.; Park, S.; Zhu, Y.W.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.  

    4. [4]

      (4) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351.  

    5. [5]

      (5) Geng, X. M.; Niu, L.; Xing, Z. Y.; Song, R. S.; Liu, G. T.; Sun, M. T.; Cheng, G. S.; Zhong, H. J.; Liu, Z. H.; Zhang, Z. J.; Sun, L. F.; Xu, H. X.; Lu, L.; Liu, L.W. Adv . Mater. 2010, 22, 638.  

    6. [6]

      (6) Lin, Y.; Zhang, K.; Chen,W. F.; Liu, Y. D.; Geng, Z, G.; Zeng, J.; Pan, N.; Yan, L. F.;Wang, X. P.; Hou, J. G. ACS Nano 2010, 4, 3033.  

    7. [7]

      (7) Guo, C. X.; Yang, H. B.; Sheng, Z. M.; Lu, Z. S.; Song, Q. L.; Li, C. M. Angew . Chem . Int . Edit. 2010, 49, 3014.  

    8. [8]

      (8) Kim, S. R.; Parvez, M. K.; Chhowalla, M. Chem . Phys . Lett. 2009, 483, 124.  

    9. [9]

      (9) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303.  

    10. [10]

      (10) Du, J.; Zhang, H.; Lv, X. J.; Li, Y. M.;Wang, Y.; Li, J. H. ACS Nano 2010, 4, 380.  

    11. [11]

      (11) Akhavan, O.; Ghaderi, E. J . Phys . Chem . C 2009, 113, 20214.  

    12. [12]

      (12) Chen, C.; Cai,W. M.; Long, M. C.; Zhou, B. X.;Wu, Y. H.;Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4, 6425.  

    13. [13]

      (13) Xu, T. G.; Zhang, L.W.; Cheng, H. Y.; Zhu, Y. F. Appl . Catal . B 2011, 101, 382.  

    14. [14]

      (14) Lightcap, I. V.; Kosel, T. H., Kamat, P. V. Nano Lett. 2010, 10, 577.  

    15. [15]

      (15) Ng, Y. H.; Lightcap, I. V.; odwin, K.; Matsumura, M.; Kamat, P. V. J . Phys . Chem . Lett. 2010, 1, 2222.  

    16. [16]

      (16) Kamat, P. V. J . Phys . Chem . Lett. 2010, 1, 520.  

    17. [17]

      (17) Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J . Mater . Chem. 2010, 20, 2801.  

    18. [18]

      (18) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J . Phys . Chem . Lett. 2010, 1, 2607.  

    19. [19]

      (19) Hummers,W. S.; Offeman, R. E. J . Am . Chem . Soc. 1958, 80, 1339.  

    20. [20]

      (20) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; rchinskiy, A. D. Chem . Mater. 1999, 11, 771.  

    21. [21]

      (21) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266, 165.  

    22. [22]

      (22) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27, 736.]

    23. [23]

      (23) Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem . Mater. 2006, 18, 2740.  

    24. [24]

      (24) Lee, D.W.; De Los Santos, V. L.; Seo, J.W.; Felix, L. L.; Bustamante, D. A.; Cole, J. M.; Barnes, C. H.W. J . Phys . Chem . B 2010, 114, 5723.  

    25. [25]

      (25) Xi, Y. Y.; Zhou, J. Z.; Zhang, Y.; Dong, P.; Cai, C. D.; Huang, H. G.; Lin, Z. H. Chem. J. Chin. Univ. 1999, 20, 937. [席燕燕, 周剑章, 张彦, 董平, 蔡成东, 黄怀国, 林仲华. 高等学校化学学报, 1999, 20, 937.]

    26. [26]

      (26) Zhang, H. Q.; Chen, K. X.; Jin, Z. S. Chin. J. Appl. Chem. 1999, 14, 98. [张虎勤, 陈开勋, 金振声. 应用化学, 1999, 14, 98.]

    27. [27]

      (27) Xiong, Z. G.; Zhang, L. L.; Ma, J. Z.; Zhao, X. S. Chem . Commun. 2010, 46, 6099.  

    28. [28]

      (28) Jin, Z. L.; Lü, G. X. J . Mol . Catal. (China) 2004, 18, 310. [靳治良, 吕功煊. 分子催化, 2004, 18, 310.]

    29. [29]

      (29) Zhang, X. J.; Tang, C. Q.; Jin, Z. L.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2011, 27, 1143. [张晓杰, 汤长青, 靳治良, 吕功煊, 李树本. 物理化学学报, 2011, 27, 1143.]

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    6. [6]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    20. [20]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(2978)
  • Abstract views(5181)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return