Citation: NIE Ping, SHEN Lai-Fa, CHEN Lin, SU Xiao-Fei, ZHANG Xiao-Gang, LI Hong-Sen. Sol-Gel Synthesis and Electrochemical Performance of Porous LiMnPO4/MWCNT Composites[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2123-2128. doi: 10.3866/PKU.WHXB20110902 shu

Sol-Gel Synthesis and Electrochemical Performance of Porous LiMnPO4/MWCNT Composites

  • Received Date: 23 May 2011
    Available Online: 1 July 2011

    Fund Project: 国家重点基础研究发展计划项目(973) (2007CB209703) (973) (2007CB209703) 国家自然科学基金(20873064) (20873064) 江苏省普通高校科研创新计划(CXZZ11_0204) (CXZZ11_0204)南京航空航天大学博士学位论文创新与创优基金(BCXJ11-10)资助 (BCXJ11-10)

  • Porous LiMnPO4 and LiMnPO4/MWCNT (multi-walled carbon nanotube) composites were prepared using a citric acid assisted sol-gel method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms (BET), and transmission electron microscopy (TEM) were performed to characterize their morphologies and structures. The results indicated that fine-sized, well-crystallized olivine LiMnPO4 was synthesized. The interlaced carbon nanotube networks were intimately embedded and incorporated into the porous LiMnPO4 particle to form highlyconductive three-dimensional (3D) networks. The LiMnPO4 particle and LiMnPO4/MWCNT composite had rich hierarchical pores. A detailed analysis showed that the average pore size was in the mesoporous range and specific surface areas of 73.7 and 69.9 m2·g-1 were obtained, respectively. Compared with the LiMnPO4 particle the LiMnPO4/MWCNT composite exhibited much higher specific capacity. When discharged at a rate of 0.05C and 2C the capacities were 108.8 and 33.2 mAh·g-1, respectively. The MWCNT effectively improved the electronic conductivity of the hybrid materials as shown by electrochemical impedance spectroscopy (EIS). The improved electrochemical performance of the LiMnPO4/MWCNT electrode is attributed to the enhanced electrical conductivity caused by the tighter binding of the carbon nanotubes with the LiMnPO4 primary particles as well as by the interconnected open pores with a high surface area.
  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  

    2. [2]

      (2) Choi, D.;Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z. M.;Wang, W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.; Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799.  

    3. [3]

      (3) Oh, S. M.; Oh, S.W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y. K. Adv. Funct. Mater. 2010, 20, 3260.  

    4. [4]

      (4) Delacourt, C.; Laffont, L.; Bouchet, R.;Wurm, C.; Leriche, J. B.; Morcrette, M.; Tarascon, J. M.; Masqueliera, C. J. Electrochem. Soc. 2005, 152, A913.

    5. [5]

      (5) Chang, X. Y.;Wang, Z. X.; Li, X. H.; Kuang, Q.; Peng,W. J.; Guo, H. J.; Zhang, Y. H. Acta Phys. -Chim. Sin. 2004, 20, 1249. [常晓燕, 王志兴, 李新海, 匡琼, 彭文杰, 郭华军, 张云河. 物理化学学报, 2004, 20, 1249.]

    6. [6]

      (6) Oh, S. M.; Jung, H. G.; Yoon, C. S.; Myung, S. T.; Chen, Z. H.; Amine, K.; Sun, Y. K. J. Power Sources 2011, 196, 6924.  

    7. [7]

      (7) Hong, J.;Wang, F.;Wang, X. L.; Graetz, J. J. Power Sources 2011, 196, 3659.  

    8. [8]

      (8) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93.  

    9. [9]

      (9) Xiao, J.; Xu,W.; Choi, D.; Zhang, J. G. J. Electrochem. Soc. 2010, 157, A142.

    10. [10]

      (10) Oh, S. M.; Oh, S.W.; Myung, S. T.; Lee, S. M.; Sun, K. Y. J. Alloy. Compd. 2010, 506, 372.  

    11. [11]

      (11) Hu, C. L.; Yi, H. H.; Fang, H. S; Yang, B.; Yao, Y. C.; Ma,W. H.; Dai, Y. N. Electrochem. Commun. 2010, 12, 1784.  

    12. [12]

      (12) Yi, H. H.; Hu, C. L.; Fang, H. S.; Yang, B.; Yao, Y. C.; Ma,W. H.; Dai, Y. H. Electrochim. Acta 2011, 56, 4052.  

    13. [13]

      (13) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Chem. Commun. 2008, No. 9, 1118.

    14. [14]

      (14) Fang, H. S.; Pan, Z. Y.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S.; Wei, S. Q. Electrochem. Commun. 2008, 10, 1071.  

    15. [15]

      (15) Kwon, N. H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Grätzel, M. Electrochem. Solid-State Lett. 2006, 9, A277.

    16. [16]

      (16) Wang, D. Y.; Buqa, H.; Crouzet, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Kwon, N. H.; Miners, J. H.; Poletto, L.; Gr?tzel, M. J. Power Sources 2009, 189, 624.  

    17. [17]

      (17) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Zhang, F. J. Mater. Chem. 2011, 21, 761.  

    18. [18]

      (18) Kim, J. K.; Choi, J.W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G. C.; Choi, J. B.; Ahn, H. J. Electrochim. Acta 2008, 53, 8258.  

    19. [19]

      (19) Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; upil, J. M.; Pejovnik, S.; Jamnik, J. J. Power Sources 2006, 153, 274.  

    20. [20]

      (20) Zhou, Y. K.;Wang, J.; Hu, Y. Y.; O'Hayre, R.; Shao, Z. P. Chem. Commun. 2010, 46, 7151.  

    21. [21]

      (21) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Xu, K.; Xia, Y. Y. J. Mater. Chem. 2010, 20, 6998.  

    22. [22]

      (22) Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. J. Phys. Chem. C 2011, 114, 3477.

    23. [23]

      (23) Su, C.; Lu, G. Q.; Xu, L. H.; Zhang, C.; Ma, C. A. Acta Phys. -Chim. Sin. 2011, 27, 609. [苏畅, 陆国强, 徐立环, 张诚, 马淳安. 物理化学学报, 2011, 27, 609.]

    24. [24]

      (24) Zhang, X. B.; Chen, M. H.; Zhang, X. G.; Li, Q.W. Acta Phys. -Chim. Sin. 2010, 26, 3169. [张校菠, 陈名海, 张校刚, 李清文. 物理化学学报, 2010, 26, 3169.]

    25. [25]

      (25) Saravanan, K.; Vittal, J. J.; Reddy, M. V.; Chowdari, B. V. R.; Balaya, P. J. Solid State Electrochem. 2010, 14, 1755.  

    26. [26]

      (26) Ji, H. M.; Yang, G.; Ni, H.; Roy, S.; Pinto, J.; Jiang, X. F. Electrochim. Acta 2011, 56, 3093.  

    27. [27]

      (27) Rangappa, D.; Sone, K.; Ichihara, M.; Kudo, T.; Honma, I. Chem. Commun. 2010, 46, 7548.  

    28. [28]

      (28) Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. Nanoscale 2011, 3, 572.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(1836)
  • Abstract views(3684)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return