Citation: YAN Hui, ZHANG Huan, ZHANG Ding, ZHU Zhi, QI Lu. Hydrothermal Synthesis of Spherical Li4Ti5O12 as Anode Material for High Power Lithium-Ion Secondary Battery[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2118-2122. doi: 10.3866/PKU.WHXB20110841 shu

Hydrothermal Synthesis of Spherical Li4Ti5O12 as Anode Material for High Power Lithium-Ion Secondary Battery

  • Received Date: 28 March 2011
    Available Online: 4 July 2011

    Fund Project: 国家高技术研究发展计划项目(863) (2008AA11A102)资助 (863) (2008AA11A102)

  • Pure spinel-type lithium titanate, Li4Ti5O12, was successfully fabricated by a facile hydrothermal route using anatase TiO2 and LiOH solution as raw materials. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and laser particle size distribution (PSD) analysis. The results showed that a spherical well-crystallized Li4Ti5O12 oxide was obtained at a calcination temperature of 800 °C. The optimal Li4Ti5O12 also has excellent electrochemical performance, which reached 162 mAh·g-1 at a current density of 35 mA· g-1 and a od rate capability with a capacity reached 124 mAh·g-1 even at a current density of 720 mA·g-1.
  • 加载中
    1. [1]

      (1) Ohzuku, T.; Ueda, A.; Yamamoto, N. J. Electrochem. Soc. 1995, 142, 1431.  

    2. [2]

      (2) Abraham, K. M.; Pasquariello, D. M.;Willstaedt, E. B. J. Electrochem. Soc. 1990, 137, 743.  

    3. [3]

      (3) Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045.  

    4. [4]

      (4) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. J. Power Sources 2001, 97-98, 235.

    5. [5]

      (5) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.  

    6. [6]

      (6) Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.;Wu, Y. P.; Takamura, T. J. Power Sources 2007, 174, 1109.  

    7. [7]

      (7) Yao, J.W.;Wu, F. J. Funct. Mater. 2007, 38 (8), 1294. [姚经文, 吴锋. 功能材料, 2007, 38 (8), 1294.]

    8. [8]

      (8) Pasquier, A. D.; Huang, C. C.; Spitler, T. J. Power Sources 2009, 186, 508.  

    9. [9]

      (9) Venkateswarlu, M.; Chen, C. H.; Do, J. S.; Lin, C.W.; Chou, T. C.; Hwang, B. J. J. Power Sources 2005, 146, 204.  

    10. [10]

      (10) Wang, D.; Ding, N.; Song, X. H.; Chen, C. H. J. Mater. Sci. 2009, 44, 198.  

    11. [11]

      (11) Yang, J.W.; Zhong, H.; Zhong, H. Y.; Li, J.; Dai, Y. Y. J. Cent. South Univ. 2005, 36 (1), 55. [杨建文, 钟晖, 钟海云, 李荐, 戴艳阳. 中南大学学报, 2005, 36 (1), 55.]

    12. [12]

      (12) Zaghib, K.; Simoneau, M.; Armand, M.; Gauthier, M. J. Power Sources 1999, 81-82, 300.

    13. [13]

      (13) Guerfia, A.; Sevignya, S.; Lagacea, M.; Hovington, P.; Kinoshita, K.; Zaghib, K. J. Power Sources 2003, 119-121, 88.

    14. [14]

      (14) Bach, S.; Pereira-Ramos, J. P.; Baffier, N. J. Power Sources 1999, 81-82, 273.

    15. [15]

      (15) Jiang, C. H.; Ichihara, M.; Honma, I.; Zhou, H. S. Electrochim. Acta 2007, 52, 6470.  

    16. [16]

      (16) Li, J. R.; Tang, Z. L.; Zhang, Z. T. Electrochem. Commun. 2005, 7, 894.  

    17. [17]

      (17) Li, Y.; Zhao, H. L.; Tian, Z. H.; Qiu,W. H.; Li, X. J. Alloy. Compd. 2008, 455, 471.  

    18. [18]

      (18) Yu, Y.; Shui, J. L.; Chen, C. H. Solid State Commun. 2005, 135, 485.  

    19. [19]

      (19) Nakahara, K.; Nakajima, R.; Matsushima, T.; Majima, H. J. Power Sources 2003, 117, 131.  

    20. [20]

      (20) Hong, K. P.; Young, T. M.; Do, K. K.; Chong, H. K. J. Am. Ceram. Soc. 1996, 79, 2727.

    21. [21]

      (21) Allen, G. C.; Paul, M. Appl. Spectrosc. 1995, 49, 451.  

    22. [22]

      (22) Gao, L.; Chen, J. Y.; Huang, J. H.; Yan, D. S. J. Inorg. Mater. 1995, 10 (4), 421. [高濂, 陈锦元, 黄军华, 严东生. 无机材料学报, 1995, 10 (4), 421.]

    23. [23]

      (23) Lai, C.; Dou, Y. Y. ; Li, X.; Gao, X. P. J. Power Sources 2010, 195, 3676.  

    24. [24]

      (24) Rahman, M. M.;Wang, J. Z.; Hassan, M. F.; Chou, S. L.; Wexler, D.; Liu, H. K. J. Power Sources 2010, 195, 4297.  

    25. [25]

      (25) Yao, X. L.; Xie, S.; Chen, C. H.;Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X. Electrochim. Acta 2005, 50, 4076.  

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(1985)
  • Abstract views(2872)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return