Citation: SUN Hai-Tao, TIAN Xiao-Hui, YUAN Yi-Zhong, SUN Jin-Yu, SUN Zhen-Rong, ZHUO Xiao-Ling. Density Functional Theory Study on Vinyl Thiophene Group Conjugated Spirooxazines[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1847-1853. doi: 10.3866/PKU.WHXB20110840 shu

Density Functional Theory Study on Vinyl Thiophene Group Conjugated Spirooxazines

  • Received Date: 21 April 2011
    Available Online: 1 July 2011

    Fund Project: 国家高技术研究发展计划(0099AA03500) (0099AA03500) 上海市重点学科(B502) (B502)重点实验室(08DZ2230500, 09JC1404300)资助项目 (08DZ2230500, 09JC1404300)

  • We carried out a theoretical study on the geometries, electronic structures, and frontier molecular orbitals of vinyl thiophene group conjugated spirooxazines (SO-SO3) using density functional theory (DFT) at the B3LYP/6-31G* level. The calculated results show that the equalization of bond lengths at the left and right parts of the open-forms occurred during the ring-opening process. A large conjugated system was formed and this significantly narrowed the energy gap. The conjugated system became larger and its electrons flowed easily because of the introduction of different lengths of vinyl thiophene conjugation moieties into the spirooxazine molecule. The electrons and energy efficiently transferred from the vinyl thiophene to naphthoxazine. The orbital contribution rate of the vinyl thiophene group in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) increased obviously. Time-dependent DFT (TD-DFT) calculations showed that as the conjugated vinyl thiophene unit reached 2-3 the first singlet excited state of SO2 and SO3 resulted from the electron transition from the HOMO to the LUMO, which were also assigned to the π* transition. Meanwhile, λmax was between 466 and 540 nm with an obvious red-shift while the λmax of O-SO2 and O-SO3 reached 605 and 647 nm, respectively.

  • 加载中
    1. [1]

      (1) Fox, R. E. Research Reports and Test Items Pertaining to EyeProtection of Air Crew Personnel. USA Patent AD440226

    2. [2]

      [P].1961 Final Report on Contract AF41 (657) 215, AD 440226,1961.

    3. [3]

      (2) Fan, M. G. Basic Fundamentals of Photochemistry andMaterials Science of Photonics; Science Press: Beijing, 2001;p 226.

    4. [4]

      [樊美公. 光化学基本原理与光子学材料科学. 北京:科学出版社, 2001: 226.]

    5. [5]

      (3) Tamai, N.; Miyasaka, H. Chem. Rev. 2000, 100, 1875.  

    6. [6]

      (4) Chu, N. Y. C. Can. J. Chem. 1983, 61, 300.  

    7. [7]

      (5) Tang, Z.Y.; Hu, Y. C.; Zhao, Y.; Liu, S. B. Acta Phys. Chim. Sin.2009, 25, 701.

    8. [8]

      [唐智勇, 胡云楚, 赵莹, 刘述斌. 物理化学学报, 2009, 25, 701.]

    9. [9]

      (6) Xue, Y. S.; ng, X. D.; Xiao, H. M.; Tian, H. Acta Chim. Sin.2004, 62, 963.

    10. [10]

      [薛运生, 贡雪东, 肖鹤鸣, 田禾. 化学学报,2004, 62, 963.]

    11. [11]

      (7) Wang, J. Y.; Feng, C.G. Chinese Journal of Applied Chemistry2007, 24, 7.

    12. [12]

      [王建营, 冯长根. 应用化学, 2007, 24, 7.]

    13. [13]

      (8) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94,195.  

    14. [14]

      (9) Dehu, C.; Meyers, F.; Bredas, J. L. J. Am. Chem. Soc. 1993, 115,6198.  

    15. [15]

      (10) (a) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (c) Maurel, F.; Aubard, J.; Millie, P.; Dognon, J. P.; Rajzmann,M.; Guglielmetti, R.; Samat, A. J. Phys. Chem. A 2006, 110,4759. (d) Sheng, Y. H.; Leszczynski, J.; Garcia, A. A.; Rosario, R.;Gust, D.; Springer, J. J. Phys. Chem. B 2004, 108, 16233.  

    16. [16]

      (11) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.: Pittsburgh, PA, 2010

    17. [17]

      (12) (a) Schneider, S. Z. Phys. Chem. Neue. Folge. 1987, 154, 91. (b) Maeda, S.; Mitsuhashi, K.; Osano, Y. T.; Nakamura, S.; Ito,M. Mol. Cryst. Liq. Cryst. 1994, 246, 223.

    18. [18]

      (13) Millini, R.; Del Piero, G.; Allegrini, P.; Crisci, L.; Malatesta, V.Acta Crystallogr. C 1991, 47, 2567.  

    19. [19]

      (14) Ortiz, R. P.; Delgado, M. C. R.; Casado, J.; Hernández, V.; Kim,O.;Woo, H. Y.; Navarrete, J. T. L. J. Am. Chem. Soc. 2004, 126,13363.  

    20. [20]

      (15) Cufioni, A.; Andreoni,W. IBM J. Res. Dev. 2001, 45, 101.  

    21. [21]

      (16) Cufioni, A.; Mauro, B.; Andreoni,W. Chemical Physics Letters1998, 294, 263.  

    22. [22]

      (17) Bohne, C.; Fan, M. G.; Li, Z. J.; Lusztyk, J.; Scaiano, J. C.J. Chem. Soc. Chem. Commun. 1990, 571.

    23. [23]

      (18) (a) Jr. Tyer, N.W.; Becker, R. S. J. Am. Chem. Soc. 1970, 92,1289. (b) Jr. Tyer, N.W.; Becker, R. S. J. Am. Chem. Soc. 1970, 92,1295.  

    24. [24]

      (19) Wang, X.W.; Jiang, G.; Du, J. G. Acta Phys. -Chim. Sin. 2011,27, 309.

    25. [25]

      [王晓巍, 蒋刚, 杜际广. 物理化学学报, 2011,27, 309.]

    26. [26]

      (20) Kumar, S.; Velasco, K.; McCurdy, A. J. Mol. Struct. 2010, 968,13.  

    27. [27]

      (21) Hudson, G. A.; Cheng, L.; Yu, J. M.; Yan, Y.; Dyer, D. J.;McCarroll, M. E.;Wang, L. C. J. Phys. Chem. B 2010, 114, 870.


  • 加载中
    1. [1]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    20. [20]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

Metrics
  • PDF Downloads(1027)
  • Abstract views(2824)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return