Citation: TONG Xin, CHEN Rui, CHEN Tie-Hong. Photocatalytic Activity of TiO2 with Micrometer-Sized Macropores[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1941-1946. doi: 10.3866/PKU.WHXB20110836 shu

Photocatalytic Activity of TiO2 with Micrometer-Sized Macropores

  • Received Date: 17 March 2011
    Available Online: 28 June 2011

    Fund Project: 国家自然科学基金(20873070, 20973095)资助项目 (20873070, 20973095)

  • Macroporous TiO2 with aligned channels was synthesized using citric acid as a chelator. The wall of the macropore was composed of nanosized anatase crystals. The degradation of rhodamine B (RhB) was used as a model reaction to test the photocatalytic activity of the samples. Compared with ground TiO2 powder, macroporous TiO2 with aligned channels did not give a better photocatalytic RhB degradation property. Because of the scattering of UV-light by anatase nanoparticles, the TiO2 located inside the macroporous wall was not irradiated by UV-light, and this affected the photocatalytic property of the macroporous TiO2. The photocatalytic property improved upon exposing more of the external TiO2 surface to UV light. Furthermore, uniform and dispersed micrometer sized TiO2 spheres were fabricated using cetyltriethylammonium bromide (CTAB) and polyacrylic acid (PAA) as templates. The photocatalytic degradation of RhB confirmed that reducing the particle size improved the efficiency of the photocatalytic activity.

  • 加载中
    1. [1]

      (1) Shibata, N.; to, A.; Choi, S. Y.; Mizoguchi, T.; Findlay, S. D.; Yamamoto, T.; Ikuhara, Y. Science 2008, 5901, 570.

    2. [2]

      (2) Hardi, M. D.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857.  

    3. [3]

      (3) Gutierrez, J.; Tercjak, A.; Mondra , I. J. Am. Chem. Soc. 2010, 132, 873.  

    4. [4]

      (4) Huang, F. Z.; Chen, D. H.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301.  

    5. [5]

      (5) Li, G. R.;Wang, F.; Jiang, Q.W.; Gao, X. P.; She, P.W. Angew. Chem. Int. Edit. 2010, 122, 3735.

    6. [6]

      (6) Zhang, X. R.; Lin, Y. H.; Zhang, J. F.; He, D. Q.;Wang, D. J. Acta Phys. -Chim. Sin. 2010, 26, 2733. [张晓茹, 林艳红, 张健 夫, 何冬青, 王德军. 物理化学学报, 2010, 26, 2733.]

    7. [7]

      (7) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    8. [8]

      (8) Wang, M. Y.;Wang, C. L.; Xie, K. P.; Sun, L.; Lin, C. J. Acta Phys. -Chim. Sin. 2009, 25, 2475. [王梦晔, 王成林, 谢鲲鹏, 孙岚, 林昌健. 物理化学学报, 2009, 25, 2475.]

    9. [9]

      (9) Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S.; Kim, M.; Hwang, C. S. Nature Nanotech. 2010, 5, 148.  

    10. [10]

      (10) Jung, H. S.; Lee, J. K.; Lee, J.; Kang, B. S.; Jia, Q. X.; Nastasi, M.; Noh, J. H.; Cho, C. M.; Yoon, S. H. Langmuir 2008, 24, 2695.  

    11. [11]

      (11) Xie, T. H.; Lin, J. J. Phys. Chem. C 2007, 111, 9968.  

    12. [12]

      (12) Suwanchawalit, C.; Patil, A. J.; Kumar, R. K.;Wongnawa, S.; Mann, S. J. Mater. Chem. 2009, 19, 8478.  

    13. [13]

      (13) Torimoto, T.; Nakamura, N.; Ikeda, S.; Ohtani, B. Phys. Chem. Chem. Phys. 2002, 4, 5910.  

    14. [14]

      (14) Kandiel, T. A.; Dillert, R.; Feldhoff, A.; Bahnemann, D.W. J. Phys. Chem. C 2010, 114, 4909.  

    15. [15]

      (15) Meulen, T. V. D.; Mattson, A.; ?sterlund, L. J. Catal. 2007, 251, 131.  

    16. [16]

      (16) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638.  

    17. [17]

      (17) He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Nature Mater. 2009, 8, 585.  

    18. [18]

      (18) Zhao,W.; Ma,W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem. Soc. 2004, 126, 4782.  

    19. [19]

      (19) Chen, X. B.; Burda, C. J. Am. Chem. Soc. 2008, 130, 5018.  

    20. [20]

      (20) Xu,W. Q.; He, H.; Yu, Y. B. J. Phys. Chem. C 2009, 113, 4426.  

    21. [21]

      (21) Kim, S. H.; Cho, Y. S.; Jeon, S. J.; Eun, T. H.; Yi, G. R.; Yang, S. M. Adv. Mater. 2008, 20, 3268.  

    22. [22]

      (22) Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406.  

    23. [23]

      (23) Song, X. F.; Gao, L. J. Phys. Chen. C 2007, 111, 8180.  

    24. [24]

      (24) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Thampi, R.; Durrant, M. G. J. R. J. Am. Chem. Soc. 2004, 126, 5670.  

    25. [25]

      (25) Choi, H.; Sofranko, A. C.; Dionysiou, D. D. Adv. Funct. Mater. 2006, 16, 1067.  

    26. [26]

      (26) Yu, J. G.; Su, Y. R.; Cheng, B. Adv. Funct. Mater. 2007, 17, 1984.  

    27. [27]

      (27) Li, X.C.; John, V. T.; He, G. H.; Zhan, J. J.; Tan, G.; Mcpherson, G.; Bose, A.; Sarkar, J. Langmuir 2009, 25, 7586.


  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(1248)
  • Abstract views(2957)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return