Citation: ZHAO Liu-Jie, RAN Jing-Yu, WU Sheng. Thermodynamic Study of the Humidity Ratio for Methane Reforming at Low Temperature in a Micro-Combustor[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2027-2034. doi: 10.3866/PKU.WHXB20110835
-
To realize the stable combustion of methane in a micro-combustor it is necessary to investigate the influence of the humidity ratio on the reforming system for methane-wet air reforming. Thus, we studied the effects of the humidity ratio on carbon deposition, methane conversion, H2 production, and the reaction process under lean oxygen below 973 K and at 0.1 MPa theoretically with a constant air-methane ratio or feed gas flux using thermodynamic analysis. Results show that carbon deposition always decreases with a humidity ratio increase at a certain methane mass flow in the micro-combustor. In contrast, the methane conversion ratio decreased initially and then increased while the H2 yield always increased. The main product of methane conversion is CO2. The CO selectivity increases initially and then decreases while the CO2 selectivity always increases with an increase in the humidity ratio. Furthermore, the amount of consumed steam will finally increase to more than the amount of generated steam during the reaction process with an increase in the humidity ratio, which also leads to an increase for steam after the reaction. When the amount of steam is less than the air in the feed gas, a steam consumption-dominant system is always obtained upon varying the steam mass fraction before and after the reaction when the humidity ratio reaches 280 g·kg-1. Additionally, it is beneficial to reduce the carbon deposition and to promote reforming during the reaction process when the humidity ratio is higher than 350 g·kg-1. By meeting the humidity ratio conditions mentioned above a higher methane conversion ratio and H2 yield can be obtained under a constant air-methane ratio condition.
-
-
[1]
(1) Ran, J. Y.; Hu, J. H. Proceedings of the CSEE 2007, 27, 42. [冉景煜, 胡建红. 中国电机工程学报, 2007, 27, 42.
-
[2]
(2) Tonkovich, A. L. Y.; Yang, B.; Perry, S. T.; Fitzgerald, S. P.; Wang, Y. Catal. Today 2007, 120, 21.
-
[3]
(3) Arzamendia, G.; Dieguez, P. M.; Montes, M.; Odriozola, J. A.; Sousa-Aguiar, E. F.; Gandia, L. M. Chem. Eng. J. 2009, 154, 168.
-
[4]
(4) Hua, J. S.;Wu, M.; Kumar, K. Chem. Eng. Sci. 2005, 60, 3497.
-
[5]
(5) Nezhad, M. Z.; Rowshanzamir, S.; Eikani, M. H. Int. J. Hydrog. Energy 2009, 34, 1292.
-
[6]
(6) Xu, S.;Wang, X. L.; Zhao, R. Prog. Chem. 2003, 15, 141. [许珊, 王晓来, 赵睿. 化学进展, 2003, 15, 141.]
-
[7]
(7) Ran, J. Y.; Zhao, L. J. Acta Phys. -Chim. Sin. 2010, 26, 2899. [冉景煜, 赵柳洁. 物理化学学报, 2010, 26, 2899.]
-
[8]
(8) Ehrfeld,W.; Hessel, V.; Lowe, H. Microreactor: New Technologies for Modern Chemistry; Chemical Industry Press: Beijing, 2004; pp 26-29; translated by Luo, G. S. [Ehrfeld, W.; Hessel, V.; Lowe, H. 微反应器: 现代化工的新技术. 骆广生, 译. 北京: 化工出版社. 2004: 26-29]
-
[9]
(9) Pedernera, M. N.; Pina, J.; Borio, D. O. Chem. Eng. J. 2007, 134, 138.
-
[10]
(10) Hecht, E. S.; Gupta, G. K.; Zhu, H. Y. Applied Catalysis A: General 2005, 295, 40.
-
[11]
(11) Rostrupnielsen, J. R.; Hansen, J. H. B. Journal of Catalysis 1993, 144, 38.
-
[12]
(12) Patel, K. S.; Sunol, A. K. Int. J. Hydrog. Energy 2007, 32, 2344.
-
[13]
(13) Hoang, D. L.; Chan, S. H. Int. J. Hydrog. Energy 2007, 32, 548.
-
[14]
(14) Ding, O. L.; Chan, S. H. Int. J. Hydrog. Energy 2009, 34, 270.
-
[15]
(15) Chen, Y. F.; Zhang, M. H.; Jiang, H. X. Journal of Molecular Catalysis 2007, 21, 351. [陈毅飞, 张敏华, 姜浩锡. 分子催化, 2007, 21, 351.]
-
[16]
(16) Ran, J. Y.; Zhao, L. J. Thermodynamic Analysis of Temperature and Pressure on Carbon Deposition for Methane Reforming at Low Temperature in Micro-combustor. Proceedings of the 8th International Conference on Nanochannels, Microchannels, and Minichannels, 2010, PTS A and B, Montreal, Canada, Aug 1-5, 2010; ASME, Eds.; Amer Soc Mechanical Engineers: New York, 2011; pp 1075-1081.
-
[17]
(17) Christensen, T. S.; Primdahl, I. I. Hydrocarb Process. Int. Ed. 1994, 73, 39.
-
[18]
(18) He, L. M.; Shen, Z. J. Methane Conversion and Use; Chemical Industry Press: Beijing, 2005; pp 58-64. [贺黎明, 沈召军. 甲烷的转化和利用. 北京: 化学工业出版社, 2005: 58-64.]
-
[19]
(19) Chen, Z. Y. Chemical Thermodynamics and Refractory Compositions; Metallurgical Industry Press: Beijing, 2005; pp 162-172. [陈肇友. 化学热力学与耐火材料. 北京: 冶金工业 出版社, 2005: 162-172.]
-
[20]
(20) Ye, D. L.; Hu, J. H. The Practical Thermodynamics Data Book of Inorganic Substances, 2nd ed.; Metallurgical Industry Press: Beijing, 2002; pp 228-1183. [叶大伦, 胡建华. 实用无机物热 力学数据手册. 第2 版. 北京: 冶金工业出版社, 2002: 228-1183.]
-
[21]
(21) Ran, J. Y.; Tu,W. F. Journal of Engineering Thermophysics 2011, 31, 345. [冉景煜, 涂维峰. 工程热物理学报, 2011, 31, 345.]
-
[22]
(22) Furjes, P.; Bognar, G.; Barsony, I. Sensor Actuat. B. -Chem. 2006, 120, 270.
-
[23]
(23) Lee, S. H. D.; Applegate, D. V.; Ahmed, S.; Calderone, S. G.; Harvey, T. L. Int. J. Hydrog. Energy 2005, 30, 829.
-
[24]
(24) Chan, S. H.;Wang, H. M. Fuel Process Technology 2000, 64, 221.
-
[25]
(25) Wang, J. G.; Yang, L. Y.; Liu, H.; Li, C. Y. Journal of Beijing University of Chemical Technology 2005, 32, 10. [ 王金刚, 杨立英, 刘辉, 李成岳. 北京化工大学学报, 2005, 32, 10.]
-
[1]
-
-
[1]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[2]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[3]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[4]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[5]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[6]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[7]
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
-
[8]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[9]
Sheng Zhang , Mingyu Wang , Xiaohong Wang , Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071
-
[10]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[11]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[12]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[13]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[14]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[15]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[16]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[17]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[18]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[19]
Shunliu Deng , Haifeng Su , Yaxian Zhu , Yuzhi Wang , Yuhua Weng , Zhaobin Chen , Shunü Peng , Yinyun Lü , Xinyi Hong , Yiru Wang , Xiaozhen Huang , Zhimin Lin , Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002
-
[20]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[1]
Metrics
- PDF Downloads(1044)
- Abstract views(2364)
- HTML views(1)