Citation: LI Shuang, QIU Yu-Qin, ZHANG Suo-Hui, GAO Yun-Hua. Mechanism of Lysine on the Formation of Glycyrrhetic Acid Elastic Vesicles[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2167-2172. doi: 10.3866/PKU.WHXB20110833 shu

Mechanism of Lysine on the Formation of Glycyrrhetic Acid Elastic Vesicles

  • Received Date: 17 May 2011
    Available Online: 24 June 2011

    Fund Project: 国家自然科学基金(20975106)资助项目 (20975106)

  • Elastic vesicles of glycyrrhetic acid (GA) with lysine in the aqueous phase were prepared by the film-high pressure homogenization method. The influence of lysine on the formation of GA elastic vesicles was evaluated in this work. The lysine salt of GA was synthesized and entrapped in elastic vesicles as a control formulation. The particle size, zeta-potential, entrapment efficiency, phase transformation temperature, deformability of the elastic vesicles, and the permeation of GA through rat skin were investigated. By the incorporation of lysine into elastic vesicles the particle size decreased slightly and the phase transformation temperature decreased while the entrapment efficiency and deformability of the elastic vesicles increased obviously. The drug loading reached 1.5 mg·mL-1, which was 30 times higher than that of GA elastic vesicles without lysine. The drug loading and deformability of the elastic vesicles was remarkably higher than that obtained using the lysine salt. In addition, the cumulative amount of GA permeation through rat skin within 8 h and the residual amount in the skin were found to be 4.3 times and 9.2 times higher than that of the vesicles without lysine, which was higher than that of the elastic vesicles with the lysine salt of GA. These results indicate that lysine forms an ion associate with GA, which takes part in the formation of vesicle membranes and subsequently increases the membrane's fluidity. Such a high drug loading capability is a result of the synergistic effect between lysine and the elastic vesicles.
  • 加载中
    1. [1]

      (1) Matsui, S.; Matsumoto, H.; Sonoda, Y.; Ando, K.; Aizu-Yokota, E.; Sato, T.; Kasahara, T. Int. Immunopharmacol. 2004, 4, 1633.  

    2. [2]

      (2) Maitraie, D.; Hung, C. F.; Tu, H. Y.; Liou, Y. T.;Wei, B. L.; Yang, S. C.;Wang, J. P.; Lin, C. N. Bioorg. Med. Chem. 2009, 17, 2785.  

    3. [3]

      (3) Imanishi, N.; Kawai, H.; Hayashi, Y.; Yatsunami, K.; Ichikawa, A. Biochem. Pharmacol. 1989, 38, 2521.  

    4. [4]

      (4) Armanini, D.; Fiore, C.; Mattarello, M. J.; Bielenberg, J.; Palermo, M. Exp. Clin. Endocrinol. Diabetes 2002, 110, 257.  

    5. [5]

      (5) Abe, H.; Ohya, N.; Yamamoto, K. F.; Shibuya, T.; Arichi, S.; Odashima, S. Eur. J. Cancer Clin. Oncol. 1987, 23, 1549.  

    6. [6]

      (6) Rossi, T.; Benassi, L.; Magnoni, C.; Ruberto, A. I.; Coppi, A.; Baggio, G. In Vivo 2005, 19, 319.

    7. [7]

      (7) Ichikawa, T.; Ishida, S.; Sakiya, Y.; Akada, Y. Chem. Pharm. Bull. 1984, 32, 3734.

    8. [8]

      (8) Hattori, M.; Sakamoto, T.; Kobashi, K.; Namba, T. Planta Med. 1983, 48, 38.  

    9. [9]

      (9) Takeda, S.; Ishthara, K.;Wakui, Y.; Amagaya, S.; Maruno, M.; Akao, T.; Kobashi, K. J. Pharm. Pharmacol. 1996, 48, 902.

    10. [10]

      (10) Akao, T.; Aoyama, M.; Hattori, M.; Imai, Y.; Namba, T.; Tezuka, Y.; Kikuchi, T.; Kobashi, K. Biochem. Pharmacol. 1990, 40, 291.  

    11. [11]

      (11) Cevc, G.; Blume, G. Biochim. Biophys. Acta 1992, 1104, 226.  

    12. [12]

      (12) Choi, M. J.; Maibach, H. I. Int. J. Cosmet. Sci. 2005, 27, 211.  

    13. [13]

      (13) Yang, C. Y.; Liu, Y.; Li, Q. G.; Li, L.W. Acta Phys. -Chim. Sin. 2007, 23, 635. [杨昌英, 刘义, 李强国, 李林蔚. 物理化学学报, 2007, 23, 635.]  

    14. [14]

      (14) Xu, H.; Liu, S. S.; Jiang, Y. T.; Liu, K.;Wang, Z. T. Chinese Journal of Analytical Chemistry 2006, 34, 687. [许卉, 刘生生, 姜永涛, 刘珂, 王峥涛. 分析化学, 2006, 34, 687.]

    15. [15]

      (15) Cheng, X. P.; Fan, J.W.; Pang, J. Qinghai Medical Journal 2004, 34, 44. [程小平, 樊静维, 庞捷. 青海医药杂志, 2004, 34, 44.]

    16. [16]

      (16) Qiu, Y. Q.; Gao, Y. H.; Hu, K. J.; Li, F. J. Control. Release 2008, 129, 144.  

    17. [17]

      (17) Jain, S.; Jain, P.; Umamaheshwari, R. B.; Jain, N. K. Drug Dev. Ind. Pharm. 2003, 29, 1013.  

    18. [18]

      (18) Mishra, D.; Dubey, V.; Asthana, A.; Saraf, D. K.; Jain, N. K. Vaccine 2006, 24, 4847.  

    19. [19]

      (19) Cevc, G.; Blume, G. Biochim. Biophys. Acta 2004, 1663, 61.  

    20. [20]

      (20) Zhu,W.W.; Yu, A. H.;Wang,W. H.; Dong, R. Q.;Wu, J.; Zhai, G. X. Int. J. Pharm. 2008, 360, 184.  

    21. [21]

      (21) Hao, J.; Sun, Y.;Wang, Q.; Tong, X.; Zhang, H.; Zhang, Q. Int. J. Pharm. 2010, 399, 102.  

    22. [22]

      (22) Gardikis, K.; Hatziantoniou, S.; Viras, K.;Wagner, M.; Demetzos, C. Int. J. Pharm. 2006, 318, 118.  

    23. [23]

      (23) Panchagnula, R.; Desu, H.; Jain, A.; Khandavilli, S. J. Pharm. Sci. 2004, 93, 2177.  

    24. [24]

      (24) Katahira, N.; Murakami, T.; Kugai, S.; Yata, N.; Takano, M. J. Drug Target. 1999, 6, 405.  

    25. [25]

      (25) Montenegro, L.; Panico, A. M.; Ventimiglia, A.; Bonina, F. P. Int. J. Pharm. 1996, 133, 89.  

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    4. [4]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    17. [17]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    18. [18]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    19. [19]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    20. [20]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

Metrics
  • PDF Downloads(852)
  • Abstract views(2526)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return