Citation: XU Qun-Jie, LI Jin-Guang, LI Qiao-Xia. Preparation of Mesoporous Carbon at Different Temperatures as a Catalyst Support for Direct Methanol Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1881-1885. doi: 10.3866/PKU.WHXB20110827 shu

Preparation of Mesoporous Carbon at Different Temperatures as a Catalyst Support for Direct Methanol Fuel Cells

  • Received Date: 17 March 2011
    Available Online: 23 June 2011

    Fund Project: 国家自然科学基金项目(20873031) (20873031) 上海市教委科技创新重点项目(10ZZ116) (10ZZ116) 上海市科委能力建设项目(09230501400, 10160502300) (09230501400, 10160502300)

  • Using mesoporous SiO2 (SBA-15) as templates and sugar as a carbon precursor, mesoporous carbon (CMK-3) was prepared at different temperatures (600-900 °C). 20%(w) Pt/CMK-3 was then prepared by impregnation reduction with sodium borohydride as a reductant. Cyclic voltammetry (CV) and chronoamperometry were applied to study the catalytic performance and stability toward methanol oxidation for the as-prepared catalyst. CO striping voltammetry was used to determine its anti-poisoning capability toward CO. The results show that the Pt/CMK-3 prepared at 900 °C had the best catalytic performance and stability toward methanol but at a carbonization temperature of 700 °C the Pt catalyst had a lower stripping potential to CO.

  • 加载中
    1. [1]

      (1) Wang, R. H.; Tian, C. G.;Wang, L.;Wang, B. L.; Zhang, H. B.; Fu, H. G. Chem. Commun. 2009, 3104.

    2. [2]

      (2) Sun, Z. P.; Zhang, X. G.; Liang, Y. Y.; Tong, H.; Xue, R. L.; Yang, S. D.; Li, H. L. J. Electroanal. Chem. 2009, 633, 1.  

    3. [3]

      (3) Reshetenko, T. V.; Kim, H. T.; Kweon, H. J. Electrochim. Acta 2008, 53, 3043.  

    4. [4]

      (4) Zhou, C.;Wang, H.; Peng, F.; Liang, J.; Yu, H.; Yang, J. Langmuir 2009, 25, 7711.  

    5. [5]

      (5) Liu, H. J.;Wang, X. M.; Cui,W. J.; Dou, Y. Q.; Zhao, D. Y.; Xia, Y. Y. J Mater. Chem. 2010, 20, 4223.  

    6. [6]

      (6) Xu, Q. J.; Zhou, X. J.; Li, Q. X.; Li, J. G. Acta Phys. -Chim. Sin. 2010, 26, 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26, 2135.]

    7. [7]

      (7) Salgado, J. R. C.; Alcaide, F.; álvarez, G.; Calvillo, L.; Lázaro, M. J.; Pastor, E. J. Power Sources 2010, 195, 4022.  

    8. [8]

      (8) Salgado, J. R. C.; Quintana, J. J.; Calvillo, L.; Lazaro, M. J.; Cabot, P. L.; Esparbe, I.; Pastor, E. Phys. Chem. Chem. Phys. 2008, 10, 6796.

    9. [9]

      (9) Chen, M. H.; Jiang, Y. X.; Chen, S. R.; Huang, R.; Lin, J. L.; Chen, S. P.; Sun, S. G. J. Phys. Chem. C 2010, 114, 19055.  

    10. [10]

      (10) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.  

    11. [11]

      (11) Shanahan, P. V.; Xu, L. B.; Liang, C. D.;Waje, M.; Dai, S.; Yan, Y. S. J. Power Sources 2008, 185, 423.  

    12. [12]

      (12) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  

    13. [13]

      (13) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.  

    14. [14]

      (14) Parsons, R.; VanderNoot, T. J. Electroanal. Chem. 1988, 257, 9.  

    15. [15]

      (15) Sirk, A. H. C.; Hill, J. M.; Kung, S. K. Y.; Birss, V. I. J. Phys. Chem. B 2004, 108, 689.  

    16. [16]

      (16) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.  

    17. [17]

      (17) Howard Fairbrother, D.; Peng, X. D.; Viswanathan, R.; Stair, P. C.; Trenary, M.; Fan, J. Surface Science Letters 1993, 285, L455.

    18. [18]

      (18) Cui, X. Z.; Cui, F. M.; He, Q. J.; Guo, L. M.; Ruan, M. l.; Shi, J. l. Fuel 2010, 89, 372.  

    19. [19]

      (19) Lee, E. P.; Peng, Z.; Cate, D. M.; Yang, H.; Campbell, C. T.; Xia, Y. J. Am. Chem. Soc. 2007, 129, 10634.  

    20. [20]

      (20) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 105, 13.  


  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    6. [6]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    7. [7]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    8. [8]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    9. [9]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    12. [12]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    16. [16]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    17. [17]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    18. [18]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(1097)
  • Abstract views(2524)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return