Citation: WANG Jian-Tao, ZHANG Xiao-Hong, WANG Hui, OU Xue-Mei. Super-Hydrophobic Silicon/Silica Hierarchical Structure Film[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2233-2238. doi: 10.3866/PKU.WHXB20110820 shu

Super-Hydrophobic Silicon/Silica Hierarchical Structure Film

  • Received Date: 20 April 2011
    Available Online: 20 June 2011

    Fund Project: 国家自然科学基金(50825304, 50972150, 20971128)资助项目 (50825304, 50972150, 20971128)

  • Silicon (Si)-based materials with a super-hydrophobic surface were prepared using microscale rough surfaces, which were subsequently modified by organic compounds with low surface energies. However, the super-hydrophobicity was gradually lost because of the degradation of the organic compounds when applied to an outer environment. Herein, a Si-based film with a super-hydrophobic surface fabricated by chemical vapor deposition (CVD) using a liquid metal (tin) as the growth substrate is reported. We found that the film was composed of vertical Si/SiO2 hierarchical wires upon characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Reasons for the generation of this super-hydrophobicity are given using the Cassie model. We conclude that the special Si/SiO2 hierarchical structure plays an important role in the super-hydrophobic performance of the film. Compared with the previous Si-based material with a super-hydrophobic surface, this novel structure promises to widen its area of application since its super-hydrophobicity is independent of chemical modification.
  • 加载中
    1. [1]

      (1) Nakajima, A.; Hashimoto, K.;Watanable, T. Monatsh. Chem. 2001, 132, 31.

    2. [2]

      (2) Gao, X. F.; Jiang, L. Nature 2004, 432, 36.  

    3. [3]

      (3) Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Science 2003, 299, 1377.  

    4. [4]

      (4) Zhang, X.; Shi, F.; Niu, J.; Jiang, Y. G.;Wang, Z. Q. J. Mater. Chem. 2008, 18, 621.  

    5. [5]

      (5) Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Accounts Chem. Res. 2005, 38, 644.  

    6. [6]

      (6) Li, X. M.; Reinhoudt, D.; Cre -Calama, M. Chem. Soc. Rev. 2007, 36, 1350.  

    7. [7]

      (7) Sun, T. L.;Wang, G. J.; Feng, L.; Liu, B. Q.; Ma, Y. M.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Edit. 2004, 43, 357.  

    8. [8]

      (8) Zhai, L.; Berg, M. C.; Cebeci, F. Nano Lett. 2006, 6, 1213.  

    9. [9]

      (9) Li, X. M.; He, T.; Cre -Calama, M.; Reinhoudt, D. N. Langmuir 2008, 24, 8008.  

    10. [10]

      (10) Han,W.;Wu, D.; Ming,W.; Niemantsverdriet, H.; Thuene, P. C. Langmuir 2006, 22, 7956.  

    11. [11]

      (11) Jin, M. H.; Feng, X. J.; Feng, L.; Sun, T. L.; Zhai, J.; Li, T. J.; Jiang, L. Adv. Mater. 2005, 17, 1977.  

    12. [12]

      (12) Ji, J.; Fu, J.; Shen, J. Adv. Mater. 2006, 18, 1441.  

    13. [13]

      (13) Hang, T.; Hu, A. M.; Ling, H. Q.; Li, M.; Mao, D. L. Applied Surface Science 2010, 256, 2400.  

    14. [14]

      (14) Feng, L.; Li, S. H.; Li, H. J.; Zhai, J.; Song, Y. L.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Edit. 2002, 114, 1269.

    15. [15]

      (15) Zhou, S. S.; Guan, Z. S.; Li, Q.; Lu, C. H.; Xu, Z. Z. Acta Phys. -Chim. Sin. 2009, 25, 1593. [周思斯, 管自生, 李强, 陆春华, 许仲梓. 物理化学学报, 2009, 25, 1593.]

    16. [16]

      (16) Li, M.; Zhai, J.; Liu, H.; Song, Y.; Jiang, L.; Zhu, D. J. Phys. Chem. B 2003, 107, 9954.  

    17. [17]

      (17) Cao, L. L.; Price, T. P.;Weiss, M.; Gao, D. Langmuir 2008, 24, 1640.  

    18. [18]

      (18) Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Adv. Mater. 2002, 14, 1164.

    19. [19]

      (19) Zhou, M.; Zheng, A. R.; Yang, J. H. Acta Phys. -Chim. Sin. 2007, 23, 1296. [周明, 郑傲然, 杨加宏. 物理化学学报, 2007, 23, 1296.]

    20. [20]

      (20) Zhao, N.; Shi, F.;Wang, Z. Q.; Zhang, X. Langmuir 2005, 21, 4713.  

    21. [21]

      (21) Zhang, X.; Shi, F.; Yu, X.; Liu, H.; Fu, Y.;Wang, Z.; Jiang, L.; Li, X. J. Am. Chem. Soc. 2004, 126, 3064.  

    22. [22]

      (22) Lim, H. S.; Han, J. T.; Kwak, D.; Jin, M.; Cho, K. J. Am. Chem. Soc. 2006, 128, 14458.  

    23. [23]

      (23) Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Perry, C. C.; Roach, P. Chem. Commun. 2005, 3135.

    24. [24]

      (24) Han, J. T.; Lee, D. H.; Ryu, C. Y.; Cho, K. J. Am. Chem. Soc. 2004, 126, 4796.  

    25. [25]

      (25) Li, S. M.; Zhou, S. Z.; Liu, J. H. Acta Phys. -Chim. Sin. 2009, 25, 2581. [李松梅, 周思卓, 刘建华. 物理化学学报, 2009, 25, 2581.]

    26. [26]

      (26) Minko, S.; Muller, M.; Motornov, M.; Nitschke, M.; Grundke, K.; Stamm, M. J. Am. Chem. Soc. 2003, 125, 3896.  

    27. [27]

      (27) Zhou, Y. B.; He, B.; Yang, Y.;Wang, F.; Liu,W. M.;Wang, P. F.; Zhang,W. J.; Bello, J.; Lee, S. T. J. Nanosci. Nanotechnol. 2011, 11, 2292.  

    28. [28]

      (28) Xiu, Y. H.; Zhang, S.; Yelundur, V.; Rohatgi, A.; Hess, D.W.; Wong, C. P. Langmuir 2008, 24, 10421.  

    29. [29]

      (29) Xiu, Y. H.; Zhu, L. B.; Hess, D.W.;Wong, C. P. Nano Lett., 2007, 7, 3388.  

    30. [30]

      (30) Cao, M.W.; Song, X. Y.; Zhai, J.;Wang, J. B.;Wang, Y. L. J. Phys. Chem. B 2006, 110, 13072.  

    31. [31]

      (31) Baldacchini, T.; Carey, J. E.; Zhou, M.; Mazur, E. Langmuir 2006, 22, 4917.  

    32. [32]

      (32) Oner, D.; Mccarthy, T. J. Langmuir 2000, 16, 7777.  

    33. [33]

      (33) Nosonovsky, M.; Bhushan, B. Nano Lett. 2007, 7, 2633.  

    34. [34]

      (34) Xiu, Y. H.; Zhu, L. B.; Hess, D.W.;Wong, C. P. J. Phys. Chem. C 2008, 112, 11403.  

    35. [35]

      (35) Verplanck, N.; Galopin, E.; Camart, J. C.; Thomy, V.; Coffinier, Y.; Boukherroub, R. Nano Lett. 2007, 7, 813.  

    36. [36]

      (36) Dorrer, C.; Rühe, J. Adv. Mater. 2008, 20, 159.  

    37. [37]

      (37) Piret, G.; Coffinier, Y.; Roux, C.; Melnyk, O.; Boukherroub, R. Langmuir 2008, 24, 1670.  

    38. [38]

      (38) Wang, H.; Zhang, X. H.; Ma, D. D. D.; Lee, S. T. Appl. Phys. Lett. 2008, 93, 023119.  

    39. [39]

      (39) Wang, H.; Zhang, X. H.; Fan, X.; Lee, C. S.; Lee, S. T. Chem. Commun. 2009, 5916.

    40. [40]

      (40) Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546.  

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    6. [6]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    10. [10]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(1530)
  • Abstract views(3337)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return