Citation: XU Ning, ZHANG Chao, KONG Fan-Jie, SHI You-Jin. Transport Properties of Corrugated Graphene Nanoribbons[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2107-2110. doi: 10.3866/PKU.WHXB20110819 shu

Transport Properties of Corrugated Graphene Nanoribbons

  • Received Date: 11 April 2011
    Available Online: 20 June 2011

    Fund Project: 国家自然科学基金(10874052) (10874052) 全国优秀博士学位论文基金(200726) (200726) 江苏省自然科学基金(BK2010499) (BK2010499) 江苏省高校自然科学研究基金(11KJB140012) (11KJB140012)盐城工学院面上项目(XKY2011014)资助 (XKY2011014)

  • We studied the transport properties of corrugated graphene nanoribbons by the recursive Green function method. We show that in the presence of ripples the minigaps with zero conductance and minibands with conductance fluctuations form in the zigzag ribbons among the first Van Hove singularity. For the metal armchair ribbons a conductance gap is present in the vicinity of the Fermi energy, which corresponds to a metal-semiconductor transition. With the fluctuation of ripples intensifying the overall averaged conductance decreases for both the zigzag and armchair ribbons and it tends to be zero. These results are useful for a better understanding of the electronic transport properties of realistic graphene nanoribbons and will be helpful for the design of nanodevices based on graphene.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M.; Gri rieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.  

    3. [3]

      (3) Zhang, Y.; Tan, Y.W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 202.

    4. [4]

      (4) Nomura, K.; MacDonald, A. H. Phys. Rev. Lett. 2007, 98, 076602.  

    5. [5]

      (5) Tworzydlo, J.; Trauzettel, B.; Titov, M.; Rycerz, A.; Beenakker, C.W. J. Phys. Rev. Lett. 2006, 96, 246802.  

    6. [6]

      (6) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  

    7. [7]

      (7) Katsnelson, M. L.; Novoselov, K. S. Solid State Commun. 2007, 143, 3.  

    8. [8]

      (8) Vazquez de Parga, A. L.; Calleja, F.; Borca, B.; Passegg, M. C. G.; Hinarejos, J. J., Jr.; Guinea, F.; Miranda, R. Phys. Rev. Lett. 2008, 100, 056807.  

    9. [9]

      (9) Gusynin, V. P.; Sharapov, S. G. Phys. Rev. Lett. 2005, 95, 146801.  

    10. [10]

      (10) Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Phys. Rev. B 2006, 73, 125411.  

    11. [11]

      (11) Peierls, R. E. Helv. Phys. Acta 1934, 7, 81.

    12. [12]

      (12) Peierls, R. E. Ann. Inst. H. Poincare 1935, 5, 177.

    13. [13]

      (13) Landau, L. D. Zur Theorie der Phasenumwandlungen II. Phys. Z. 1937, 11, 26.

    14. [14]

      (14) Landau, L. D.; Lifshitz, E. M. Statistical Physics Part I; Pergamon: Oxford, 1980; Sections 137 and 138.

    15. [15]

      (15) Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Rep. Prog. Phys. 1984, 47, 399.  

    16. [16]

      (16) Zinkeallmang, M.; Feldman, L. C.; Grabow, M. H. Surf. Sci. Rep. 1992, 16, 377.  

    17. [17]

      (17) Evans, J.W.; Thiel, P. A.; Bartelt, M. C. Surf. Sci. Rep. 2006, 61, 1.

    18. [18]

      (18) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60.  

    19. [19]

      (19) Ishigami, M. J.; Chen, J. H.; Cullen,W. G.; Fuhrer, M. S.; Williams, E. D. Nano Lett. 2007, 7, 1643.  

    20. [20]

      (20) Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G.W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9209.  

    21. [21]

      (21) Fasolino, A.; Los, J. H.; Katsnelson, M. I. Nat. Mater. 2007, 6, 858.  

    22. [22]

      (22) Kim, E. A.; Castro Neto, A. H. Europhys. Lett. 2008, 84, 57007.  

    23. [23]

      (23) Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Nat. Phys. 2008, 4, 144.  

    24. [24]

      (24) Hiura, H. Appl. Surf. Sci. 2004, 222, 374.  

    25. [25]

      (25) Zhang, Y.; Tan, Y.W.; St?rmer, H. L.; Kim, P. Nature 2005, 438, 201.  

    26. [26]

      (26) Berger, C.; Song, Z. M.; Li, X. B.;Wu, X. S.; Brown, N.; Naud, C.; Mayo, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer,W. A. Science 2006, 312, 1191.  

    27. [27]

      (27) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B 2004, 108, 19912.  

    28. [28]

      (28) Li, T. C.; Lu, S. P. Phys. Rev. B 2008, 77, 085408.  

    29. [29]

      (29) Son, Y.W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216803.  

    30. [30]

      (30) Pereira Vitor, M.; Castro Neto, A. H. Phys. Rev. B 2009, 80, 045401.

    31. [31]

      (31) Xu, N.; Ding, J.W.; Xing, D. Y. J. Appl. Phys. 2008, 103, 083710.  

    32. [32]

      (32) Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K. Phys. Rev. B 2006, 73, 125415.  

  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

Metrics
  • PDF Downloads(1042)
  • Abstract views(2686)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return