Citation:
LI Hong-Jian, LI An-Yang, TANG Hong, DOU Yu-Sheng. Molecular Dynamics Simulation of Effect of a Femtosecond Laser on the Photofragmentation Reaction Mechanism of C60[J]. Acta Physico-Chimica Sinica,
;2011, 27(09): 2072-2078.
doi:
10.3866/PKU.WHXB20110816
-
The photofragmentation of C60 fullerene by an ultrafast laser pulse was studied by semiclassical molecular dynamics simulation. Two different laser pulses were used for this study: one with a duration of 40 fs FWHM (full width at half maximum) and the other with a duration of 500 fs FWHM. Both laser pulses had an energy of 2.0 eV. The simulation was run at different laser intensities for each laser pulse. The simulation results showed that a dominant amount of laser energy deposited to C60 fullerene was distributed into electronic energy. From the simulation we find that the electronic excitation from the occupied molecular orbitals to the unoccupied orbitals is closely related to the photofragmentation of C60 fullerene. By analyzing the fragmentation size distribution, the atomic equivalence index, the temperature, and the absorbed energy (including the electronic energy, the potential energy, and the kinetic energy), we found that non-thermal effects play a significant role in the laser fragmentation of C60 fullerene. By examining the fragmentation features of C60 fullerene with two different laser pulses we found that the laser pulse duration affects the fragmentation process significantly and that laser intensity has little effect on the fragmentation after the absorbed electronic energy becomes saturated.
-
-
-
[1]
(1) David, J. T.; Ronnie, K.; Stuart, R. J. Chem. Phys. 1986, 85, 5805.
-
[2]
(2) Assion, A.; Baumert, T.; Bergt, M.; Brixner, T.; Kiefer, B.; Seyfried, V.; Strehle, M.; Gerber, G. Science 1998, 282, 919.
- [3]
- [4]
- [5]
-
[6]
(6) Rabitz, H.; Vivie-Riedle, de. R.; Motzkus, M.; Kompa, K. Science 2000, 288, 824.
-
[7]
(7) Bai, M. Z.; Cheng, L.; Tang, H.; Dou, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 3143. [白明泽, 程丽, 唐红, 豆育升. 物理化学学报, 2010, 26, 3143.]
-
[8]
(8) Brien, S. C.; Heath, J. R.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1988, 88, 220.
-
[9]
(9) Lykke, K. R.;Wurz, P. J. Phys. Chem. 1992, 96, 3191.
- [10]
-
[11]
(11) Boyle, M.; Laarmann, T.; Shchatsinin, I.; Schulz, C. P.; Hertel, I. V. J. Chem. Phys. 2005, 122, 181103.
-
[12]
(12) Campbell, E. E. B.; Hansen, K.; Hoffmann, K.; Korn, G.; Tchaplyguine, M.;Wittmann, M.; Hertel, I. V. Phys. Rev. Lett. 2000, 84, 2128.
-
[13]
(13) Bhardwaj, V. R.; Corkum, P. B.; Rayner, D. M. Phys. Rev. Lett. 2003, 91, 203004.
-
[14]
(14) Boyle, M.; Hedén, M.; Schulz, C. P.; Campbell, E. E. B.; Hertel, I. V. Phys. Rev. A. 2004, 70, 051201.
-
[15]
(15) Boyle, M.; Laarmann, T.; Hoffman, K.; Hedén, M.; Campbell, E. E. B.; Schulz, C. P.; Hertel, I. V. Eur. Phys. J. D 2005, 36, 339.
-
[16]
(16) Dou, Y. S.; Torralva, B. R.; Allen, R. E. Chem. Phys. Lett. 2004, 392, 352.
-
[17]
(17) Dou, Y. S.; Torralva, B. R.; Allen, R. E. J. Mod. Opt. 2003, 50, 2615.
-
[18]
(18) Dou, Y. S.; Lei, Y. B.; Li, A. Y.;Wen, Z. Y.; Torralva, B.; Lo, G.; Allen, R. J. Phys. Chem. A 2007, 111, 1133.
- [19]
-
[20]
(20) Allen, R. E.; Dumitrica,T.; Torralva, B. R. Ultrafast Physical Processes in Semiconductors; Academic Press: New York, 2001; pp 85-90.
-
[21]
(21) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.
-
[22]
(22) Swope,W. C.; Anderson, H. C.; Berens, P. H.;Wilson, K. R. J. Chem. Phys. 1982, 76, 637.
-
[23]
(23) Ben, N. M.; Martínez, T. J. Adv. Chem. Phys. 2002, 124, 439.
-
[24]
(24) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Phys. Lett. 1994, 217, 513.
- [25]
-
[26]
(26) Li, H. J.; Tang, H.; Dou, Y. S. Mol. Phys. 2009, 107, 2039.
-
[27]
(27) Jeschke, H. O.; Garcia, M. E.; Alonso, J. A. Chem. Phys. Lett. 2002, 352, 154.
-
[28]
(28) Xu, C.; Scuseria, G. E. Phys. Rev. Lett. 1994, 72, 669.
-
[29]
(29) Kim, S. G.; Tom, D. Phys. Rev. Lett. 1994, 7, 2418.
-
[1]
-
-
-
[1]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[2]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[3]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[4]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[5]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[6]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[7]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[8]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[9]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[10]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[11]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[12]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[13]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[14]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[15]
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
-
[16]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[17]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[18]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[19]
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
-
[20]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[1]
Metrics
- PDF Downloads(1154)
- Abstract views(2488)
- HTML views(37)