Citation: LI Hong-Jian, LI An-Yang, TANG Hong, DOU Yu-Sheng. Molecular Dynamics Simulation of Effect of a Femtosecond Laser on the Photofragmentation Reaction Mechanism of C60[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2072-2078. doi: 10.3866/PKU.WHXB20110816 shu

Molecular Dynamics Simulation of Effect of a Femtosecond Laser on the Photofragmentation Reaction Mechanism of C60

  • Received Date: 13 April 2011
    Available Online: 17 June 2011

    Fund Project: 国家自然科学基金(21073242)资助项目 (21073242)

  • The photofragmentation of C60 fullerene by an ultrafast laser pulse was studied by semiclassical molecular dynamics simulation. Two different laser pulses were used for this study: one with a duration of 40 fs FWHM (full width at half maximum) and the other with a duration of 500 fs FWHM. Both laser pulses had an energy of 2.0 eV. The simulation was run at different laser intensities for each laser pulse. The simulation results showed that a dominant amount of laser energy deposited to C60 fullerene was distributed into electronic energy. From the simulation we find that the electronic excitation from the occupied molecular orbitals to the unoccupied orbitals is closely related to the photofragmentation of C60 fullerene. By analyzing the fragmentation size distribution, the atomic equivalence index, the temperature, and the absorbed energy (including the electronic energy, the potential energy, and the kinetic energy), we found that non-thermal effects play a significant role in the laser fragmentation of C60 fullerene. By examining the fragmentation features of C60 fullerene with two different laser pulses we found that the laser pulse duration affects the fragmentation process significantly and that laser intensity has little effect on the fragmentation after the absorbed electronic energy becomes saturated.
  • 加载中
    1. [1]

      (1) David, J. T.; Ronnie, K.; Stuart, R. J. Chem. Phys. 1986, 85, 5805.  

    2. [2]

      (2) Assion, A.; Baumert, T.; Bergt, M.; Brixner, T.; Kiefer, B.; Seyfried, V.; Strehle, M.; Gerber, G. Science 1998, 282, 919.  

    3. [3]

      (3) Zewail, A. H. Adv. Chem. Phys. 1997, 101, 3.  

    4. [4]

      (4) Zhu,W. J. Chem. Phys. 1998, 108, 1953.  

    5. [5]

      (5) Zhu,W.; Rabitz, H. J. Chem. Phys. 1999, 111, 472.  

    6. [6]

      (6) Rabitz, H.; Vivie-Riedle, de. R.; Motzkus, M.; Kompa, K. Science 2000, 288, 824.  

    7. [7]

      (7) Bai, M. Z.; Cheng, L.; Tang, H.; Dou, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 3143. [白明泽, 程丽, 唐红, 豆育升. 物理化学学报, 2010, 26, 3143.]

    8. [8]

      (8) Brien, S. C.; Heath, J. R.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1988, 88, 220.  

    9. [9]

      (9) Lykke, K. R.;Wurz, P. J. Phys. Chem. 1992, 96, 3191.

    10. [10]

      (10) Lykke, K. R. Phys. Rev. A 1995, 52, 1354.  

    11. [11]

      (11) Boyle, M.; Laarmann, T.; Shchatsinin, I.; Schulz, C. P.; Hertel, I. V. J. Chem. Phys. 2005, 122, 181103.  

    12. [12]

      (12) Campbell, E. E. B.; Hansen, K.; Hoffmann, K.; Korn, G.; Tchaplyguine, M.;Wittmann, M.; Hertel, I. V. Phys. Rev. Lett. 2000, 84, 2128.  

    13. [13]

      (13) Bhardwaj, V. R.; Corkum, P. B.; Rayner, D. M. Phys. Rev. Lett. 2003, 91, 203004.  

    14. [14]

      (14) Boyle, M.; Hedén, M.; Schulz, C. P.; Campbell, E. E. B.; Hertel, I. V. Phys. Rev. A. 2004, 70, 051201.  

    15. [15]

      (15) Boyle, M.; Laarmann, T.; Hoffman, K.; Hedén, M.; Campbell, E. E. B.; Schulz, C. P.; Hertel, I. V. Eur. Phys. J. D 2005, 36, 339.  

    16. [16]

      (16) Dou, Y. S.; Torralva, B. R.; Allen, R. E. Chem. Phys. Lett. 2004, 392, 352.  

    17. [17]

      (17) Dou, Y. S.; Torralva, B. R.; Allen, R. E. J. Mod. Opt. 2003, 50, 2615.

    18. [18]

      (18) Dou, Y. S.; Lei, Y. B.; Li, A. Y.;Wen, Z. Y.; Torralva, B.; Lo, G.; Allen, R. J. Phys. Chem. A 2007, 111, 1133.  

    19. [19]

      (19) Graf, M.; Vogl, P. Phys. Rev. B 1995, 51, 4940.  

    20. [20]

      (20) Allen, R. E.; Dumitrica,T.; Torralva, B. R. Ultrafast Physical Processes in Semiconductors; Academic Press: New York, 2001; pp 85-90.

    21. [21]

      (21) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.  

    22. [22]

      (22) Swope,W. C.; Anderson, H. C.; Berens, P. H.;Wilson, K. R. J. Chem. Phys. 1982, 76, 637.  

    23. [23]

      (23) Ben, N. M.; Martínez, T. J. Adv. Chem. Phys. 2002, 124, 439.

    24. [24]

      (24) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Phys. Lett. 1994, 217, 513.  

    25. [25]

      (25) Horvath, L.; Bea, T. A. Phys. Rev. B 2008, 77, 075102.  

    26. [26]

      (26) Li, H. J.; Tang, H.; Dou, Y. S. Mol. Phys. 2009, 107, 2039.  

    27. [27]

      (27) Jeschke, H. O.; Garcia, M. E.; Alonso, J. A. Chem. Phys. Lett. 2002, 352, 154.  

    28. [28]

      (28) Xu, C.; Scuseria, G. E. Phys. Rev. Lett. 1994, 72, 669.  

    29. [29]

      (29) Kim, S. G.; Tom, D. Phys. Rev. Lett. 1994, 7, 2418.

  • 加载中
    1. [1]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    2. [2]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    9. [9]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    10. [10]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    11. [11]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(1154)
  • Abstract views(2433)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return