Citation:
LI Hong-Jian, LI An-Yang, TANG Hong, DOU Yu-Sheng. Molecular Dynamics Simulation of Effect of a Femtosecond Laser on the Photofragmentation Reaction Mechanism of C60[J]. Acta Physico-Chimica Sinica,
;2011, 27(09): 2072-2078.
doi:
10.3866/PKU.WHXB20110816
-
The photofragmentation of C60 fullerene by an ultrafast laser pulse was studied by semiclassical molecular dynamics simulation. Two different laser pulses were used for this study: one with a duration of 40 fs FWHM (full width at half maximum) and the other with a duration of 500 fs FWHM. Both laser pulses had an energy of 2.0 eV. The simulation was run at different laser intensities for each laser pulse. The simulation results showed that a dominant amount of laser energy deposited to C60 fullerene was distributed into electronic energy. From the simulation we find that the electronic excitation from the occupied molecular orbitals to the unoccupied orbitals is closely related to the photofragmentation of C60 fullerene. By analyzing the fragmentation size distribution, the atomic equivalence index, the temperature, and the absorbed energy (including the electronic energy, the potential energy, and the kinetic energy), we found that non-thermal effects play a significant role in the laser fragmentation of C60 fullerene. By examining the fragmentation features of C60 fullerene with two different laser pulses we found that the laser pulse duration affects the fragmentation process significantly and that laser intensity has little effect on the fragmentation after the absorbed electronic energy becomes saturated.
-
-
-
[1]
(1) David, J. T.; Ronnie, K.; Stuart, R. J. Chem. Phys. 1986, 85, 5805.

-
[2]
(2) Assion, A.; Baumert, T.; Bergt, M.; Brixner, T.; Kiefer, B.; Seyfried, V.; Strehle, M.; Gerber, G. Science 1998, 282, 919.

- [3]
- [4]
- [5]
-
[6]
(6) Rabitz, H.; Vivie-Riedle, de. R.; Motzkus, M.; Kompa, K. Science 2000, 288, 824.

-
[7]
(7) Bai, M. Z.; Cheng, L.; Tang, H.; Dou, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 3143. [白明泽, 程丽, 唐红, 豆育升. 物理化学学报, 2010, 26, 3143.]
-
[8]
(8) Brien, S. C.; Heath, J. R.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1988, 88, 220.

-
[9]
(9) Lykke, K. R.;Wurz, P. J. Phys. Chem. 1992, 96, 3191.
- [10]
-
[11]
(11) Boyle, M.; Laarmann, T.; Shchatsinin, I.; Schulz, C. P.; Hertel, I. V. J. Chem. Phys. 2005, 122, 181103.

-
[12]
(12) Campbell, E. E. B.; Hansen, K.; Hoffmann, K.; Korn, G.; Tchaplyguine, M.;Wittmann, M.; Hertel, I. V. Phys. Rev. Lett. 2000, 84, 2128.

-
[13]
(13) Bhardwaj, V. R.; Corkum, P. B.; Rayner, D. M. Phys. Rev. Lett. 2003, 91, 203004.

-
[14]
(14) Boyle, M.; Hedén, M.; Schulz, C. P.; Campbell, E. E. B.; Hertel, I. V. Phys. Rev. A. 2004, 70, 051201.

-
[15]
(15) Boyle, M.; Laarmann, T.; Hoffman, K.; Hedén, M.; Campbell, E. E. B.; Schulz, C. P.; Hertel, I. V. Eur. Phys. J. D 2005, 36, 339.

-
[16]
(16) Dou, Y. S.; Torralva, B. R.; Allen, R. E. Chem. Phys. Lett. 2004, 392, 352.

-
[17]
(17) Dou, Y. S.; Torralva, B. R.; Allen, R. E. J. Mod. Opt. 2003, 50, 2615.
-
[18]
(18) Dou, Y. S.; Lei, Y. B.; Li, A. Y.;Wen, Z. Y.; Torralva, B.; Lo, G.; Allen, R. J. Phys. Chem. A 2007, 111, 1133.

- [19]
-
[20]
(20) Allen, R. E.; Dumitrica,T.; Torralva, B. R. Ultrafast Physical Processes in Semiconductors; Academic Press: New York, 2001; pp 85-90.
-
[21]
(21) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.

-
[22]
(22) Swope,W. C.; Anderson, H. C.; Berens, P. H.;Wilson, K. R. J. Chem. Phys. 1982, 76, 637.

-
[23]
(23) Ben, N. M.; Martínez, T. J. Adv. Chem. Phys. 2002, 124, 439.
-
[24]
(24) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Phys. Lett. 1994, 217, 513.

- [25]
-
[26]
(26) Li, H. J.; Tang, H.; Dou, Y. S. Mol. Phys. 2009, 107, 2039.

-
[27]
(27) Jeschke, H. O.; Garcia, M. E.; Alonso, J. A. Chem. Phys. Lett. 2002, 352, 154.

-
[28]
(28) Xu, C.; Scuseria, G. E. Phys. Rev. Lett. 1994, 72, 669.

-
[29]
(29) Kim, S. G.; Tom, D. Phys. Rev. Lett. 1994, 7, 2418.
-
[1]
-
-
-
[1]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[2]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[3]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[4]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[5]
Wenwen Zhang , Peichao Zhang , Conghao Gai , Xiaoyun Chai , Yan Zou , Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076
-
[6]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Linlin Wu , Yonghua Zhou , Zhongbei Li , Liu Deng , Younian Liu , Limiao Chen , Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018
-
[9]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[10]
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
-
[11]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[12]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[13]
Junjian Wang , Qingquan Yu , Shunyao Liu , Yuke Chen , Xiaoyu Liu , Guodong Li , Xiaoyan Liu , Hong Liu , Weijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[18]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[19]
Qingtao Niu , Xinyao Xu , Weiyue Yu , Shuxiang Meng , Zhiguo Lv , Manman Jin . Exploration and Practice of Science-Education Integration in Chemical Engineering Thermodynamics Teaching for Chemical Engineering Majors: A Case of Chemical Engineering Physical Property Data Estimation and Chemical Reaction Equilibrium. University Chemistry, 2025, 40(10): 1-9. doi: 10.12461/PKU.DXHX202412029
-
[20]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[1]
Metrics
- PDF Downloads(1154)
- Abstract views(2657)
- HTML views(45)
Login In
DownLoad: