Citation: YAO Shu-Juan, SHAO Xin, CUI Shou-Xin, ZHAO Jian-Wei, ZHOU Cheng-Gang. Adsorption and Migration of Pt Atoms on γ-Al2O3(001) Surface[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1816-1822. doi: 10.3866/PKU.WHXB20110814 shu

Adsorption and Migration of Pt Atoms on γ-Al2O3(001) Surface

  • Received Date: 26 March 2011
    Available Online: 16 June 2011

    Fund Project:

  • We present a systematic study using density functional theory (DFT) with the generalized gradient approximation (GGA) method to understand the adsorption and migration of Pt atoms on the γ-Al2O3(001) surface. Energetically the most favorable adsorption sites were identified and all these adsorption configurations were found to show substantial structural relaxation. Our calculated adsorption and energy barrier of migration results indicate that the Pt clusters can be stably anchored onto the surface. A significantly higher adsorption energy at the O site is largely attributed to the fact that charge transfer from Pt to O atoms results in positively charged Pt atoms. The repulsion between Pt and Al atoms leads to much weaker bonds. The calculated average adsorption energies were found to be size and shape dependent and in general decrease as the number of Pt atoms increases. The highest energy barrier for Pt atom migration on the γ-Al2O3(001) surface is about 0.51 eV. The formation of a metal cluster would be strongly preferred upon high Pt atom loading. Consequently, the evolution of Pt atoms on the γ-Al2O3(001) surface is unlikely to be smooth and agglomeration can occur under certain conditions.

  • 加载中
    1. [1]

      (1) Wallin, M.; Gronbeck, H.; Spetz, A. L.; Eriksson, M.; Skoglundh, M. J. Phys. Chem. B 2005, 109 (19), 9581.  

    2. [2]

      (2) Sun, M.; Croiset, E. B.; Hudgins, R. R.; Silveston, P. L.; Menzinger, M. Ind. Eng. Chem. Res. 2003, 42 (1), 37.  

    3. [3]

      (3) Olsson, L.;Westerberg, B.; Persson, H.; Fridell, E.; Skoglundh, M.; Andersson, B. J. Phys. Chem. B 1999, 103 (47), 10433.  

    4. [4]

      (4) N , L. T.; Xu, L.; Grant, A.W.; Campbell, C. T. J. Phys. Chem. B 2003, 107 (5), 1174.  

    5. [5]

      (5) Xu, G.; Zhang, Z. G. J. Power Sources 2006, 157 (1), 64.  

    6. [6]

      (6) Hoang-Van, C.; Zegaoui, O. Appl. Catal. A-Gen., 1995, 130, 89.  

    7. [7]

      (7) Petersson, M.; Jonsson, D.; Persson, H.; Cruise, N.; Andersson, B. J. Catal. 2006, 238 (2), 321.  

    8. [8]

      (8) Bai, Y.; Lu, C.; Ma, L.; Chen, P.; Zheng, Y.; Li, X. Chin. J. Catal. 2006, 27, 275. [白赢, 卢春山, 马磊, 陈萍, 郑遗凡, 李小年. 催化学报, 2006, 27, 275.]

    9. [9]

      (9) Kim, D. H.; Lim, M. S. Appl. Catal. A-Gen. 2002, 224 (1-2), 27.  

    10. [10]

      (10) Wang, X. L.; Pan, X. M.; Lin, R.; Kou, S. Y.; Zou,W. B.; Ma, J. X. Acta Phys. -Chim. Sin. 2010, 26, 1296. [王晓蕾, 潘相敏, 林瑞, 寇素原, 邹卫兵, 马建新. 物理化学学报, 2010, 26, 1296.]

    11. [11]

      (11) Márquez, A. M.; Sanz, J. F. Appl. Surf. Sci. 2004, 238 (1-4), 82.  

    12. [12]

      (12) Kang, J. H.; Menard, L. D.; Nuzzo, R. G.; Frenkel, A. I. J. Am. Chem. Soc. 2006, 128 (37), 12068.  

    13. [13]

      (13) Zhou, C.;Wu, J.; Kumar, T. J. D.; Balakrishnan, N.; Forrey, R. C.; Cheng, H. J. Phys. Chem. C 2007, 111 (37), 13786.  

    14. [14]

      (14) Ishimoto, R.; Jung, C.; Tsuboi, H.; Koyama, M.; Endou, A.; Kubo, M.; Del Carpio, C. A.; Miyamoto, A. Appl. Catal. A-Gen. 2006, 305 (1), 64.  

    15. [15]

      (15) Valentino, R. C.; Alexie, M. K.; Yashar, Y.; Andrew, M. R. Phys. Rev. B 2005, 72 (8), 081409.

    16. [16]

      (16) Shang, C.; Liu, Z. P. J. Phys. Chem. C 2010, 114 (40),16989.  

    17. [17]

      (17) Liu, Z. P.;Wang, C. M.; Fan, K. N. Angew. Chem. Int. Edit. 2006, 45 (41), 6865.  

    18. [18]

      (18) Wang, C. M.; Fan, K. N.; Liu, Z. P. J. Am. Chem. Soc. 2007, 129 (9), 2642.  

    19. [19]

      (19) Tang, Q. L.; Liu, Z. P. J. Phys. Chem. C 2010, 114 (18), 8423.  

    20. [20]

      (20) Meier, D. C.; odman, D.W. J. Am. Chem. Soc. 2004, 126 (6), 1892.  

    21. [21]

      (21) Chen, M. S.; odman, D.W. Science 2004, 306, 252.  

    22. [22]

      (22) Farmer, J. A.; Campbell, C. T. Science 2010, 329, 933.  

    23. [23]

      (23) Xu, L.; Henkelman, G.; Campbell, C. T.; Jónsson, H. Surf. Sci. 2006, 600 (6), 351.

    24. [24]

      (24) Gómez, T.; Florez, E.; Rodriguez, J. A.; Illas, F. J. Phys. Chem. C 2009, 114 (3), 1622.

    25. [25]

      (25) Segall, M. D.; et al. J. Phys.-Condens. Matter 2002, 14 (11), 2717.  

    26. [26]

      (26) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64 (4), 1045.  

    27. [27]

      (27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59 (3), 1758.  

    28. [28]

      (28) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13 (12), 5188.  

    29. [29]

      (29) Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1833.  

    30. [30]

      (30) Li, Y. N.; Lü, Y.; Zhou, L. C.; Chen, L.; Li, S. M. Acta Phys. Chim. Sin., 2010, 26, 2793. [李亚娜, 吕洋, 周立川, 陈理, 李慎敏. 物理化学学报, 2010, 26, 2793.]

    31. [31]

      (31) Halgren, T. A.; Lipscomb,W. N. Chem. Phys. Lett. 1977, 49 (2), 225.  

    32. [32]

      (32) Liu, L. M.; et al. J. Phys.: Condens. Matter 2003, 15 (47), 8103.  

    33. [33]

      (33) Zhang, J. J.; Zhang, H. Acta Phys. Sin. 2010, 59, 4143. [张建军, 张红. 物理学报, 2010, 59: 4143.]

    34. [34]

      (34) Kittel, C. In Introduction to Solid State Physics, 7th ed.; John Wiley: New York, 1996; p176.

    35. [35]

      (35) Gupta, S. K.; Nappi, B. M.; Gingerich, K. A. Inorg. Chem. 1981, 20 (4), 966.  


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    11. [11]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    12. [12]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    20. [20]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

Metrics
  • PDF Downloads(1450)
  • Abstract views(2918)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return