Citation: LIN Jian-Xin, WANG Guo-Hua, WANG Rong, LIN Bing-Yu, NI Jun, WEI Ke-Mei. Preparation and Characterization of Ru/CNTs-Al2O3 Catalyst for Ammonia Synthesis[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1961-1967. doi: 10.3866/PKU.WHXB20110812 shu

Preparation and Characterization of Ru/CNTs-Al2O3 Catalyst for Ammonia Synthesis

  • Received Date: 6 April 2011
    Available Online: 14 June 2011

    Fund Project: 国家科技支撑计划(2007BAE08B02) (2007BAE08B02)福州大学科技发展基金(2008-XY-7)资助项目 (2008-XY-7)

  • The purification treatment of carbon nanotubes-alumina was carried out using various oxidizers (ox), such as H2O2, concentrated HNO3, and air. The obtained composite was used as support for ruthenium catalysts. The structures and properties of the products before and after modification were characterized and measured using transmission electron microscopy (TEM), thermogravimetric analysis (TG), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The results show that purification modification treatment can remove the impurities on the surface of the CNTs-alumina, shorten the CNTs, and increase the amounts of hydroxyl, carboxyl, and carbonyl groups. Inductively coupled plasma (ICP) analysis shows that the dissolution solution composition of the CNTs-alumina composite supports with HNO3 oxidation treatment contains 49.98 mg·g-1 Al. The ammonia synthesis rate of the Ru/CNTs-alumina-H2O2 was found to be 39.8 mmol·g-1·h-1 at 10 MPa, 10000 h-1, and 425 °C, which was higher than those for other CNTs-alumina-ox supported Ru catalysts.

  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56.  

    2. [2]

      (2) Wild ose, G. G.; Banks, C. E.; Compton, R.G. Small 2006, 2, 182.  

    3. [3]

      (3) Yin, S. F.; Xu, B. Q.;Wang, S. J.; Ng, C. F.; Au, C. T. Catal. Lett. 2004, 3, 96.

    4. [4]

      (4) Wang, J. M.;Wang, R.; Lin, X. J.; Xie, F.;Wei, K. M.; J. Nat. Gas Chem. 2006, 15, 211.  

    5. [5]

      (5) ng, B. B.;Wang, R.; Lin, B. Y.; Xie, F.; Yu, X. J.;Wei, K. M. Catal. Lett. 2008, 122, 287.  

    6. [6]

      (6) Aika, K.; Shimazaki, K.; Hattori, Y. J. Catal. 1985, 92 (2), 296.  

    7. [7]

      (7) Busca, G.; Cristian, C.; Forzatti, P. Catal. Lett. 1995, 31, 65.  

    8. [8]

      (8) Miyazaki, A.; Balint, I.; Aika, K. J. Catal. 2001, 204, 364.  

    9. [9]

      (9) Rama Rao, K. S.; Kanta Rao, P.; Masthan, S. K. Appl. Catal. 1990, 62 (1), 19.

    10. [10]

      (10) Chen, H. B.; Lin, J. D.; Cai, Y.;Wang, X. Y.; Yi, J.;Wang, J.; Liao, D.W. Appl. Surf. Sci. 2001, 180, 328.  

    11. [11]

      (11) Xu, Q. C.; Lin, J. D.; Li, J.; Fu, X. Z.; Yang, Z.W.; Guo,W. M.; Liao, D.W. J. Mol. Catal. A-Chem. 2006, 259, 218.  

    12. [12]

      (12) Peng, D.F.; Yu, H.; Peng, F.;Wang, H. J.; Yang, J. Catal. Lett. 2009, 30, 570.

    13. [13]

      (13) Zhang, Z. J.; Sun, Z.; Zhang, Y. P. Chinese Journal Liquid Crystals and Displays 2007, 22 (5), 541.

    14. [14]

      (14) Liang, C.;Wei, Z.; Xin, Q.; Li, C. Appl. Catal. A-Gen. 2001, 208, 193.  

    15. [15]

      (15) Xing, Y. C.; Li, L.; Chusuei, C. C.; Hull, R. V. Langmuir 2005, 21 (9), 4185.

    16. [16]

      (16) Wang, S. G.; Zhang, Q.;Wang, R.; Yoon, S. F.; Ahn, J.; Yang, D. J.; Tian, J. Z.; Li, J.Q.; Zhou, Q. Electrochem. Commun. 2003, 5, 800.  

    17. [17]

      (17) Fu, X. B.; Yu, H.; Peng, F.;Wang, H. J.; Qian, Y. Appl. Catal. AGen. 2007, 321,190.  

    18. [18]

      (18) Wioletta, R. P.; Elzbieta, M.; Dariusz, S.; Zbigniew, K. J. Catal. 2005, 231, 11.  

    19. [19]

      (19) Wang, M. H.; Cha, S. H.; Yao, Y. H. Journal of Nanchang University 2007, 29 (2), 103.

    20. [20]

      (20) Moreno-Castilla, C.; Lopez-Ramon, M. V.; Carrasco-Marin, F. Carbon 2000, 38 (14), 1995.  

    21. [21]

      (21) Ma, C. A.; Tang, J. Y.; Li, G. H. Electrochemistry 2006, 12 (4), 416.

    22. [22]

      (22) Biniak, S.; Szymanski, G.; Siedlewski, J. Carbon 1997, 35, 1799.  

    23. [23]

      (23) Wang, H. J.; Yu, H.; Peng, F.; Lv, P. Electrochem. Commun. 2006, 8, 499.  

    24. [24]

      (24) Forni, L.; Molinari, D.; Rossetti, I. Appl. Catal. A-Gen. 1999, 185, 269.  


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    7. [7]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(1034)
  • Abstract views(2392)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return