Citation: XU Pei-Jun, TANG Yuan-Yuan, ZHANG Jing, ZHANG Zhi-Bo, WANG Kun, SHAO Ying, SHEN Hu-Jun, MAO Ying-Chen. Molecular Dynamics Simulation of Organic Solvents Based on the Coarse-Grained Model[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1839-1846. doi: 10.3866/PKU.WHXB20110811 shu

Molecular Dynamics Simulation of Organic Solvents Based on the Coarse-Grained Model

  • Received Date: 28 February 2011
    Available Online: 14 June 2011

    Fund Project: 中央高校专项资金优秀青年教师基金(2009QN069)资助项目 (2009QN069)

  • To obtain Gay-Berne (GB) parameters, we carried out Monte Carlo sampling of four reference configurations based on the Boltzmann distribution. After comparing with the van der Waals potential within the all-atom model we obtained the GB parameters. Also by fitting the charge, dipole, and quadrupole with the electric potential obtained from quantum chemical computations with Gaussian 03 we obtained the electric multipole potential (EMP) parameters. With the GB-EMP parameters we then carried out molecular dynamics simulations (MDS) for CHCl3 and tetrahydrofuran (THF) based on the coarse- grained (CG) model. Compared with the all-atom model, the CG model can reproduce the simulation results on the whole, but there are some deviations in the simulations in some details. The reason is that we only take one interaction site into account in this work. Therefore, for more complicated molecules it is necessary to take the placement of the interaction sites into account. Additionally, the multi-sites situation is also considered in the MDS within the frame of the coarse-grained model.

  • 加载中
    1. [1]

      (1) Dror, R. O.; Jensen, M. ?.; Borhani, D.W.; Shaw, D. E. J. Gen. Physiol. 2010, 135, 555.  

    2. [2]

      (2) Karplus, M.; McCammon, J. A. Nature Struct. Biol. 2002, 9, 646.  

    3. [3]

      (3) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan Y. B.;Wriggers,W. Science 2010, 330, 341.  

    4. [4]

      (4) van Gunsteren,W. F.; Bakowies, D.; Baron, R.; Chandrasekhar, I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D. P.; Glättli, A.; Hünenberger, P. H.; Kastenholz, M. A.; Oostenbrink, C.; Schenk, M.; Trzesniak, D.; van der Vegt, N. F. A.; Yu, H. B. B. Angew. Chem. Int. Edit. 2006, 45, 4064.  

    5. [5]

      (5) Klepeis, J. L.; Lindorff-Larsen, K.; Dror, R. O.; Shaw, D. E. Curr. Opin. Struct. Biol. 2009, 19, 120.  

    6. [6]

      (6) Freddolino, P. L.; Harrison, C. B.; Liu, Y. X.; Schulten. K. Nature Phys. 2010, 6, 751.  

    7. [7]

      (7) Xu, X. J.; Hou, T. J.; Qiao, X. B.; Zhang,W. Computer Aided Drug Design; Chemical Industry Press: Beijing, 2004; pp 169-172. [徐筱杰, 侯廷军, 乔学斌, 章威. 计算机辅助药物分子设计. 北京: 化学工业出版社, 2004, 169-172.]

    8. [8]

      (8) Leach, A. P. Molecular Modeling, Principles and Application; Person Education Limited: England, 2001; pp165-245.

    9. [9]

      (9) Schlick, T. Molecular Modeling and Simulation: An Interdisciplinary Guide, 2nd ed.; Springer: New York, 2010; pp 265-343.

    10. [10]

      (10) Voth, G. A. Coarse-Graining Of Condensed Phase and Biomolecular Systems; CRC Press: England, 2009.

    11. [11]

      (11) Chu, J.W.; Izvekov, S.; Voth, G. A. Mol. Sim. 2006, 32, 211.  

    12. [12]

      (12) Marrink, S. J.; de Vries, A. H.; Mark, A. E. J. Phys. Chem. B 2004, 108, 750.  

    13. [13]

      (13) Tozzini, V. Curr. Opin. Struc. Biol. 2005, 15, 114.

    14. [14]

      (14) lubkov, P. A.; Ren, P. Y. J. Chem. Phys. 2006, 125, 064103.  

    15. [15]

      (15) Berne, B. J.; Pechukas, P. J. Chem. Phys. 1972, 56, 4213.  

    16. [16]

      (16) Gay, J. G.; Berne, B. J. J. Chem. Phys. 1981, 74, 3316.  

    17. [17]

      (17) Cleaver, D. J.; Care, C. M.; Allen, M. P.; Neal, M. P. Phys. Rev. E 1996, 54, 559.  

    18. [18]

      (18) Wilson, M. R. J. Chem. Phys. 1997, 107, 8654.  

    19. [19]

      (19) Care, C. M.; Cleaver, D. J. Rep. Prog. Phys. 2005, 68, 2665.  

    20. [20]

      (20) Paramonov, L.; Yaliraki, S. N. J. Chem. Phys. 2005, 123, 194111.  

    21. [21]

      (21) Kabadi, V. N.; Steele,W. A. Ber. Bunsenges. Phys. Chem. 1985, 89, 2.

    22. [22]

      (22) Kabadi, V. N. Ber. Bunsenges. Phys. Chem. 1986, 90, 327.

    23. [23]

      (23) Jackson, J. D. Classical Electrodynamics, 3rd ed; JohnWiley & Sons Inc.: New York, 1999; pp 145-150.

    24. [24]

      (24) Applequist, J. J. Phys. A 1989, 22, 4303.  

    25. [25]

      (25) Ponder, J.W. TINKER Molecular Modeling, Package 5.1; Washington University Medical School.

    26. [26]

      (26) Darden, T.; York, D.; Pedersen, L. G. J. Chem. Phys. 1993, 98, 10089.  

    27. [27]

      (27) Sagui, C.; Pedersen, L. G.; Darden, T. A. J. Chem. Phys. 2004, 120, 73.  

    28. [28]

      (28) Ren, P. Y.; Ponder, J.W. J. Phys. Chem. B 2003, 107, 5933.  

    29. [29]

      (29) Wang, J. M.;Wolf, R. M.; Caldwell,W. J.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.  

    30. [30]

      (30) Yang, L. J.; Tan, C. H.; Hsieh, M. J.;Wang, J. M.; Duan, Y.; Cieplak, P.; Caldwell,W. J.; Kollman, P. A. Luo, R. J. Phys. Chem. B 2006, 110, 13166.  

    31. [31]

      (31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    32. [32]

      (32) Stone, A. J. J. Chem. Theory Comput. 2005, 1, 1128.  

    33. [33]

      (33) lubkov, P. A.;Wu, J. C.; Ren, P. Y. Phys. Chem. Chem. Phys. 2008, 10, 2050.


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    4. [4]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    5. [5]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    19. [19]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(1462)
  • Abstract views(3135)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return