Citation: XU Yong, YAN Shi-Zhi, YE Tong-Qi, ZHANG Zhao, LI Quan-Xin. Dimethyl Ether Production from Biomass Char and CO2-Rich Bio-Syngas[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1926-1932. doi: 10.3866/PKU.WHXB20110810 shu

Dimethyl Ether Production from Biomass Char and CO2-Rich Bio-Syngas

  • Received Date: 25 April 2011
    Available Online: 13 June 2011

    Fund Project: 国家自然科学基金(50772107) (50772107) 国家重点基础研究发展规划项目(973)(2007CB210206) (973)(2007CB210206)国家高技术研究发展计划项目(863)(2009AA05Z435)资助 (863)(2009AA05Z435)

  • We report on a novel approach toward dimethyl ether (DME) synthesis using crude CO2-rich bio-syngas and biomass char. The crude bio-syngas was derived from bio-oil reforming and was initially conditioned by catalytic conversion into CO-rich bio-syngas using biomass char over the Ni/Al2O3 catalyst. The molar ratio of CO2 to CO significantly decreased from 6.33 in the CO2-rich bio-syngas to 0.21 after bio-syngas conditioning at 800 °C. The yield of dimethyl ether from the conditioned bio-syngas was about four times higher than that from the CO2-rich bio-syngas over the Cu-ZnO-Al2O3/HZSM-5 catalyst. This work potentially provides a useful approach toward producing biofuels and chemicals from bio-syngas and a novel utilization of biomass char.

  • 加载中
    1. [1]

      (1) Chen, L.; Xing, L.; Han, L. Renew. Sust. Energ. Rev. 2009, 13, 2689.  

    2. [2]

      (2) Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2007, 107, 3952.  

    3. [3]

      (3) Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Nature 2002, 418, 964.  

    4. [4]

      (4) Chornet, E.; Czernik, S. Nature 2002, 418, 928.

    5. [5]

      (5) Lin, Y.; Tanaka, S. Appl. Microbiol. Biotechnol. 2006, 69, 627.  

    6. [6]

      (6) Metzger, J. O. Angew. Chem., Int. Edit. 2006, 45, 696.  

    7. [7]

      (7) Wang, Z. X.; Pan, Y.; Dong, T.; Zhu, X. F.; Kan, T.; Yuan, L. X.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Appl. Catal. A 2007, 320, 24.  

    8. [8]

      (8) Wang, Z. X.; Dong, T.; Yuan, L. X.; Kan, T.; Zhu, X. F.; Torimoto, Y.; Sadakata, M.; Li, Q. X. Energy Fuels 2007, 21, 2421.  

    9. [9]

      (9) Ruggiero, M.; Manfrida, G. Renew Energ. 1999, 16, 1106.  

    10. [10]

      (10) Khandan, N.; Kazemeini, M.; Aghaziarati, M. Catal. Lett. 2009, 129, 111.  

    11. [11]

      (11) Bae, J.W.; Kang, S. H.; Lee, Y. J.; Jun, K.W. Appl. Catal. B 2009, 90, 426.  

    12. [12]

      (12) Xu, Y.; Ye, T. Q.; Qiu, S. B.; Ning, S.; ng, F. Y.; Liu, Y.; Li, Q. X. Bioresour. Technol. 2011, 102, 6239.  

    13. [13]

      (13) Yuan, L. X.; Chen, Y. Q.; Song, C. F.; Ye, T. Q.; Guo, Q. X.; Zhu, Q. S.; Torimoto, Y.; Li, Q. X. Chem. Commun. 2008, 5215.

    14. [14]

      (14) Kan, T.; Xiong, J. X.; Li, X. L.; Ye, T. Q.; Yuan, L. X.; Torimoto, Y.; Yamamoto, M.; Li, Q. X. Int. J. Hydrog. Energy 2010, 35, 518.  

    15. [15]

      (15) ng, F. Y.; Ye, T. Q.; Yuan, L. X.; Kan, T.; Torimoto, Y.; Yamamoto, M.; Li, Q. X. Green Chem. 2009, 11, 2001.  

    16. [16]

      (16) Villacampa, J. I.; Royo, C.; Romeo, E.; Montoya, J. A.; Angel, P. D.; Monzón, A. Appl. Catal. A 2003, 252, 363.  

    17. [17]

      (17) Mao, D. S.; Yang,W. M.; Xia, J. C.; Zhang, B.; Song, Q. Y; Chen, Q. L. J. Catal. 2005, 230, 140.  

    18. [18]

      (18) Li, Y. C.; Yu, C. C.; Shen S. K. Acta. Phys. -Chim. Sin. 1999, 15, 1098. [李春义, 余长春, 沈师孔. 物理化学学报, 1999, 15, 1098.]

    19. [19]

      (19) Jin, R. C.; Chen, Y. X.; Cui,W.; Li,W. Z.; Yu, C. Y.; Jiang, Y. Acta. Phys. -Chim. Sin. 1999, 15, 313. [金荣超, 陈燕馨, 崔巍, 李文钊, 于春英, 江义. 物理化学学报, 1999, 15, 313.]

    20. [20]

      (20) Li, Y. C.; Yu, C. C.; Shen S. K. Acta. Phys. -Chim. Sin. 2000, 16, 97. [李春义, 余长春, 沈师孔. 物理化学学报, 2000, 16, 97.]

    21. [21]

      (21) Cao, D. B.; Li, Y.W.;Wang, J.; Jiao, H. Surf. Sci. 2009, 603, 2991.  

    22. [22]

      (22) Osaki, T.; Mori, T. React. Kinet. Catal. Lett. 2005, 87, 149.

    23. [23]

      (23) Roberts, D. G.; Hodge, E. M.; Harris, D. J.; Stubington, J. F. Energy Fuels 2010, 24, 5300.  

    24. [24]

      (24) Yoo, Y. D.; Lee, S. J.; Yun, Y. Korean J. Chem. Eng. 2007, 24, 350.  

    25. [25]

      (25) Larson, E. D.; Yang, H. Energy Sustain. Dev. 2004, 8, 115.  

    26. [26]

      (26) Matsuhashi, D. S. H.; Arata, K. React. Kinet. Catal. Lett. 2004, 81, 183.  

    27. [27]

      (27) Gunter, M. M.; Ressler, T.; Bems, B.; Buscher, C.; Genger, T.; Hinrichsen, O.; Muhler, M.; Schlogl, R. Catal. Lett. 2001, 71, 37.  

    28. [28]

      (28) Edwards, J. F.; Schrader, G. L. J. Phys. Chem. 1984, 88, 5620.  

    29. [29]

      (29) Borodko, Y.; Somorjai, G. A. Appl. Catal. A 1999, 186, 355.  

    30. [30]

      (30) Yang, C.; Ma, Z.; Zhao, N.;Wei,W.; Hu, T.; Sun, Y. Catal. Today 2006, 115, 222.  


  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(1079)
  • Abstract views(2570)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return