Citation: FU Rong, ZHENG Jun-Sheng, WANG Xi-Zhao, MA Jian-Xin. Effect of the Reduction Heat-Treatment Condition on the Performance of Pt-Fe/C Alloy Catalyst[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2141-2147. doi: 10.3866/PKU.WHXB20110809 shu

Effect of the Reduction Heat-Treatment Condition on the Performance of Pt-Fe/C Alloy Catalyst

  • Received Date: 1 April 2011
    Available Online: 13 June 2011

    Fund Project: 国家自然科学基金(21006073) (21006073)上海市青年科技启明星计划(11QA1407200) (11QA1407200)上海市重点学科(B303)资助项目 (B303)

  • Pt-Fe/C catalyst for proton exchange membrane fuel cell (PEMFC) was prepared by a pulse-microwave assisted chemical reduction heat-treatment synthesis method. The elemental content was tested by inductively coupled plasma (ICP). The microstructure and morphology of the as-prepared catalyst were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic performance was measured by cyclic voltammetry (CV). The results indicate that pulse-microwave assisted chemical reduction heat-treatment synthesis is an efficient method for preparing PEMFC catalysts while the temperature and time of heat treatment greatly affect the size and activity of the Pt-Fe nanoparticles. For a heating temperature of 500 °C and a time of 3 h the Pt-Fe nanoparticles were uniform in size. Moreover, the Pt-Fe/C-500-3h alloy catalyst was highly dispersed on the surface of the carbon support and the TEM and XRD showed that the average Pt-Fe nanoparticle size was 1.8 nm. The electrochemical measurements show that the electrochemical surface area (ESA) of the catalyst was 55.14 m2·g-1.
  • 加载中
    1. [1]

      (1) Prater, K. B. J. Power Sources 1996, 61, 105.  

    2. [2]

      (2) Ran, H. B.; Li, L. L.; Li, L.;Wei, Z. D. J. Chongqing University (Science Edition) 2005, 28 (4), 120. [冉洪波, 李兰兰, 李莉, 魏子栋. 重庆大学学报(自然科学版), 2005, 28 (4), 120.]

    3. [3]

      (3) Wei, Z. D.; Zhang, S. T.; Tang, Z. Y.; Guo, H. T. J. Electrochem. 2000, 30, 723-725.

    4. [4]

      (4) Toda, T.; Igarashi, H.; Uchida, H.;Watanabe, M. J. Electrochem. Soc. 1999, 146, 3750.  

    5. [5]

      (5) Beard, C.; Ross, P. N. J. Electrochem. Soc. 1990, 137, 3368.  

    6. [6]

      (6) Mukerjee, S.; Srinivasan, S. J. Electroanal. Chem. 1993, 357, 201.  

    7. [7]

      (7) Zhang, P.; Pan, M.; Yuan, R. Z.; ng, Y. P. Chin. J. Nonferrous Metals 2004, 14 (7), 1157. [张萍, 潘牧, 袁润章, 巩英鹏. 中国有色金属学报, 2004, 14 (7), 1157.]

    8. [8]

      (8) Li,W. Z.; Xin, Q.; Yan, Y. S. Int. J. Hydrog. Energy 2010, 35 (6), 2530.

    9. [9]

      (9) Li,W.; Zhou,W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G. Q.; Xin, Q. Electrochimica Acta 2004, 49 (7), 1045.

    10. [10]

      (10) Malheiro, A. R.; Perez, J.; Villullas, H. M. J. Power Sources 2010, 195, 3111.  

    11. [11]

      (11) Deivaraj, T. C.; Lee, J. Y. J. Power Sources 2005, 142, 43.  

    12. [12]

      (12) Park, G. G.; Yang, T. H.; Yoon, Y. G.; Lee,W. Y.; Kim, C. S. Int. J. Hydrog. Energy 2003, 28 (6), 645.

    13. [13]

      (13) Chu, Y. Y.;Wang, Z. B.; Gu, D. M.; Yin, G. P. J. Power Sources 2010, 195, 1799

    14. [14]

      (14) Song, S. Q.;Wang, Y.; Shen, P. K. J. Power Sources 2007, 170, 46

    15. [15]

      (15) Wang, X. Z.; Zheng, J. S.; Fu, R.; Ma, J. X. Acta Phys. -Chim. Sin. 2011, 27 (1), 85. [王喜照, 郑俊生, 符蓉, 马建新. 物理化学学报, 2011, 27 (1), 85.]

    16. [16]

      (16) Wang, X. Z.; Zheng, J. S.; Fu, R.; Ma, J. X. Chin. J. Catal. 2011, 32 (4), 599. [王喜照, 郑俊生, 符蓉, 马建新. 催化学报, 2011, 32 (4), 599.]

    17. [17]

      (17) Salgado, J. R. C.; Antolini, E.; nzalez, E. R. J. Power Sources 2005, 141, 13.  

    18. [18]

      (18) Baglio, V.; Ari?o, A.S.; Stassi, A.; D'Urso, C. D.; Blasi, A. D.; Luna, A. M. C.; Antonucci, V. J. Power Sources 2006, 159, 900.  

    19. [19]

      (19) Raadmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.  

    20. [20]

      (20) Soryna, S. C. Handbook of Stable Strontium; Plenum Press: New York, 1981, pp 11-13.

  • 加载中
    1. [1]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    17. [17]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(1058)
  • Abstract views(2410)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return