Citation: SHEN Tao, DU Feng-Pei, LIU Ting, YAO Guang-Wei, WU Zheng, FANG Meng-Meng, XU Xiao-Jie, LU Hui-Zhe. Molecular Simulation of the Interaction between Imidazole Glycerol Phosphate Dehydrase and Nitrogen-Containing Heterocyclic Phosphate Inhibitors[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1831-1838. doi: 10.3866/PKU.WHXB20110808 shu

Molecular Simulation of the Interaction between Imidazole Glycerol Phosphate Dehydrase and Nitrogen-Containing Heterocyclic Phosphate Inhibitors

  • Received Date: 26 January 2011
    Available Online: 13 June 2011

    Fund Project: 国家自然科学基金(20972184) (20972184)中央高校基本科研业务费专项资金(2009JS38,2011JS036)资助项目 (2009JS38,2011JS036)

  • A series of nitrogen-containing heterocyclic compounds as imidazole glycerol phosphate dehydrase (IGPD) inhibitors were successfully screened based on IGPD substrates; however, the mechanism is not clear. In this study, the B3LYP density functional theory method with the 6-31G** basis set as implemented in the Gaussian 03 program was selected to optimize the nitrogen-containing heterocyclic phosphates. These complex structures were constructed using molecular docking and optimization. The mode of interaction was discussed with regards to their electronic structures (frontier orbital energies and composition, the atomic charges, the natural bond orbital, etc.) and complex spatial structures (recognition functional domains of the inhibitor of IGPD, intermolecular hydrogen bonding, van der Waals interactions, etc.). The charge distribution of the nitrogen-containing heterocycle, the phosphate ion charge distribution, and the frontier orbital LUMO energy levels of the inhibitor were determined to be intrinsic factors that affect inhibitor activity. The conclusion of our study will provide valuable information for the screening and optimization of new herbicides targeted at IGPD.

  • 加载中
    1. [1]

      (1) Xiao, Y. J.;Wang, J. G.; He, F. Q.; Li, Z. M. Pesticides 2005, 44 (10), 433. [肖勇军, 王建国, 何凤琦, 李正名. 农药, 2005, 44 (10), 433.]

    2. [2]

      (2) Tada, S.; Hatano, M.; Nakayama, Y.; Volrath, S.; Guyer, D.; Ward, E.; Ohta, D. Plant Physiol. 1995, 109, 153.  

    3. [3]

      (3) Sinha, S. C.; Chaudhuri, B. N.; Burgner, J.W.; Yakovleva, G.; Davisson, V. J.; Smith, J. L. J. Biol. Chem. 2004, 279, 15491.  

    4. [4]

      (4) Mori, I.; Fonne-Pfister, R.; Matsunaga. S.; Tada, S.; Kimura, Y.; Iwasaki, G.; Mano, J.; Hatano, M.; Nakano, T.; Koizumi, S.; Scheidegger, A.; Hayakawa, K.; Ohta, D. Plant Physiol. 1995, 107, 719.

    5. [5]

      (5) Mori, I.; Iwasaki, G.; Kimura, Y.; Matsunaga, S.; Ogawa, A.; Nakano, T.; Buser, H. P.; Hatano, M.; Tada, S.; Hayakawa, K. J. Am. Chem. Soc. 1995, 117, 4411.  

    6. [6]

      (6) Mori, I., Iwasaki, G.; Hayakawa, K. Yuki sei Kagaku Kyokaishi 1996, 54, 514.

    7. [7]

      (7) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.01; Gaussian Inc.: Pittsburgh, PA, 2004.

    8. [8]

      (8) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    9. [9]

      (9) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.  

    10. [10]

      (10) Wang, Y. L.;Wu, G. S. Acta Phys. -Chim. Sin. 2008, 24, 552. [王溢磊, 吴国是. 物理化学学报, 2008, 24, 552.]  

    11. [11]

      (11) Insight II, Version 98.0; Molecular Simulation Inc.: San Die , CA, 1998.

    12. [12]

      (12) Discover 3 User Guide, Version 98.0; Molecular Simulation Inc.: San Die , CA, 1998.

    13. [13]

      (13) DiscoVery Studio, version 2.0; Molecular Simulation Inc.: San Die , CA, 2007.

    14. [14]

      (14) Xu, Y. C.; Shen, J. H.; Luo, X. M.; Shen, X.; Chen, K. X.; Jiang, H. L. Science in China Series B-Chemistry 2004, 34, 177. [许叶春, 沈建华, 罗小民, 沈旭, 陈凯先, 蒋华良. 中国科学B, 2004, 34, 177.]

    15. [15]

      (15) Qu, X. B.; Su, Z. M.; Hu, D. H.; Bao, Y. L.; Meng, X. Y.;Wu, Y.; Li, Y. X. Chem. J. Chin. Univ. 2009, 30, 1402. [曲晓波, 苏忠民, 胡冬华, 鲍永利, 孟祥颖, 乌垠, 李玉新. 高等学校化学学报, 2009, 30, 1402.]

    16. [16]

      (16) Liu, C. L.; Li, C. H.; Chen,W. Z.;Wang, C. X. Acta Phys. -Chim. Sin. 2005, 21, 1229. [刘春莉, 李春华, 陈慰祖, 王存新. 物理化学学报, 2005, 21, 1229.]

    17. [17]

      (17) Chen, P. Q.; Liu, X. H.; Sun, H.W.;Wang, B. L.; Li, Z. M.; Lai, C. M. Acta Chim. Sin. 2007, 65, 1693. [陈沛全, 刘幸海, 孙宏伟, 王宝雷, 李正名, 赖城明. 化学学报, 2007, 65, 1693.]

    18. [18]

      (18) Jiang, Y.; Guo, Z. R. Chin. J. Org. Chem. 2004, 24, 1640. [蒋毅, 郭宗儒. 有机化学, 2004, 24, 1640.]

    19. [19]

      (19) Wu, H.; Huang, Z. Z.; Chen, X. J.; Huang, Z. P.; Zheng, Y. Chinese Journal of Biochemistry and Molecular Biology 2007, 23, 959. [吴洪, 黄真珠, 陈秀娟, 黄增平, 郑勇. 中国生物化学与分子生物学报, 2007, 23, 959.]

    20. [20]

      (20) Cui, B. Q.; Zhao, D. X.; Yang, Z. Z. Acta Chim. Sin. 2007, 65, 2687. [崔宝秋, 赵东霞, 杨忠志. 化学学报, 2007, 65, 2687.]

    21. [21]

      (21) Chen,W. K.; Zhang, Y. F.; Ding, K. N.; Xu, Y. J.; Li, Y.; Li, J. Q. Chin. J. Struct. Chem. 2004, 23, 337. [陈文凯, 章永凡, 丁开宁, 徐艺军, 李奕, 李俊篯. 结构化学, 2004, 23, 337.]

    22. [22]

      (22) Zhao, X.;Wang, S.; Xu, X. H.; Huang, X. R. Acta Chim. Sin. 2009, 67, 1835. [赵熹, 王嵩, 徐晓华, 黄旭日. 化学学报, 2009, 67, 1835.]

    23. [23]

      (23) Liu, J. C.; Zhang, X. M.; Chen, M. A.; Tang, J. G.; Liu, S. D. Acta Phys.-Chim. Sin. 2010, 26, 163. [刘建才, 张新明, 陈明安, 唐建国, 刘胜胆. 物理化学学报, 2010, 26, 163.]

    24. [24]

      (24) Pan, G. X.; Ni, Z. M.; Li, X. N. Acta Phys. -Chim. Sin. 2007, 23, 1195. [潘国祥, 倪哲明, 李小年. 物理化学学报, 2007, 23, 1195.]


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    20. [20]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

Metrics
  • PDF Downloads(1016)
  • Abstract views(3288)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return