Citation: CHU Dao-Bao, LI Yan, SONG Qi, ZHOU Ying. Synthesis and Properties of LiFePO4/C Cathode Material with a New Carbon Source[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1863-1867. doi: 10.3866/PKU.WHXB20110807 shu

Synthesis and Properties of LiFePO4/C Cathode Material with a New Carbon Source

  • Received Date: 8 April 2011
    Available Online: 10 June 2011

    Fund Project: 国家自然科学基金(20476001) (20476001)安徽省自然科学基金(070414160)资助项目 (070414160)

  • We synthesized LiFePO4/C composite cathode materials by the rheological phase method with vegetable protein soya bean milk as a carbon source while FePO4·4H2O and LiOH·H2O as raw materials. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the LiFePO4/C composite materials had od crystallinity, ultrafine sphere-like particles of 200 nm in size and in situ carbon. The electrochemical performance of LiFePO4/C by galvanostatic cycling studies showed excellent cycle stability. The LiFePO4/C cathode material gave a high initial discharge capacity of 156 mAh·g-1 at 0.1C and the first columbic efficiency was 98.7%. This capacity was still 149 mAh·g-1 after 40 cycles at 0.1C and its capacity retention was more than 95% while the discharge capacity reached 134.7 mAh·g-1 at 1C indicating high electrochemical capacity and excellent cycling stability.

  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144 (4), 1188.  

    2. [2]

      (2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  

    3. [3]

      (3) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  

    4. [4]

      (4) Lu, Z. G.; Cheng, H.; Lo, M. F.; Chung, C. Y. Adv. Funct. Mater. 2007, 17, 3885.  

    5. [5]

      (5) Wang, Y. G.;Wang Y. R.; Hosono, E.;Wang, K. X.; Zhou, H. S. Angew. Chem. Int. Edit. 2008, 47, 7461.  

    6. [6]

      (6) Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Sources 2001, 97, 503.  

    7. [7]

      (7) Chen, Z. H.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184.

    8. [8]

      (8) Doeff, M. M.; Hu, Y. Q.; Mclarnon, F. Electrochem. Solid-State Lett. 2003, 6, A207.

    9. [9]

      (9) Yu, H. M.; Zheng,W.; Cao, G. X.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25, 2186. [余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25, 2186.]

    10. [10]

      (10) Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517.  

    11. [11]

      (11) Yamada, A.; Chung, S. C.; Hinokuma, K. J. J. Electrochem. Soc. 2001, 148, A224.

    12. [12]

      (12) Piana, M.; Cushing, B. L.; odenough, J. B.; Penazzi, N. Solid State Ionics 2004, 175, 233.  

    13. [13]

      (13) Meligrana, G.; Gerbaldi, C.; Tuel, A.; Bodoardo, S.; Penazzi, N. J. Power Sources. 2001, 160, 516.

    14. [14]

      (14) Choi, D.; Kumta, P. N. J. Power Sources 2007, 163, 1064.  

    15. [15]

      (15) Lee, S. B.; Cho, S. H.; Cho, S. J.; Park, G. J.; Park, S. H.; Lee, Y. S. Electrochem. Commun. 2008, 10, 1219.  

    16. [16]

      (16) Liu, X. H.; Zhao, Z.W. Powder Technology 2010, 197, 309.  

    17. [17]

      (17) Zou, H. L.; Zhang, G. H.; Shen, P. K. Materials Research Bulletin 2010, 45, 149.  

    18. [18]

      (18) Wang, K.; Cai, R.; Yuan, T.; Yu, X.; Ran, R.; Shao, Z. P. Electrochim. Acta 2009, 54, 2861.  

    19. [19]

      (19) Gaberscek, M.; Dominko, R.; Bele, M.; Remskar, M.; Hanzel, D.; Jamnik, J. Solid State Ionics 2005, 176, 1801.  

    20. [20]

      (20) Sides, C. R.; Croce, F.; Young, V. K. Electrochem. Solid-State Lett. 2005, 8, A484.

    21. [21]

      (21) Kuwahara, A.; Suzuki, S.; Miyayama, M. Ceramics International 2008, 34, 863.  

    22. [22]

      (22) Zhang, D.; Cai, R.; Zhou, Y. K.; Shao, Z. P.; Liao, X. Z.; Ma, Z. F. Electrochim. Acta 2010, 55, 2653.  

    23. [23]

      (23) Yang, S. F.; Song, Y.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2002, 4, 239.

    24. [24]

      (24) Yang, G. L.; Zhang, X. F.; Liu, J.; He, X. G.;Wang, J.W.; Xie, H. M.;Wang, R. S. J. Power Sources 2010, 195, 1211.  

    25. [25]

      (25) Huang, Y. H.; Park, K. S.; odenough, J. B. J. Electrochem. Soc. 2006, 153, A2282.

    26. [26]

      (26) Ni, J. F.; Morishita, M.; Kawabe, Y.;Watada, M.; Takeichi, N.; Sakai, T. J. Power Sources 2010, 195, 2877.  

    27. [27]

      (27) Luo, S. H.; Tang, Z. L.; Lu, J. B.; Zhang, Z. T. Chinese Chemical Letters 2007, 18, 237.  

    28. [28]

      (28) Huang, Y. H.; Ren, H. B.; Yin, S. Y.;Wang, Y. H.; Peng, Z. H.; Zhou, Y. H. J. Power Sources 2010, 195, 610.  

    29. [29]

      (29) Li, D. M.; Song, H. L.; Zu, D. H. Cereal & Food Industry 2006, 13, 20. [李大明, 宋焕禄, 祖道海. 粮食与食品工业, 2006, 13, 20.]

    30. [30]

      (30) Xiong, L. Z.; He, Z. Q. Acta Phys. -Chim. Sin. 2010, 26, 573. [熊利芝, 何则强. 物理化学学报, 2010, 26, 573.]

    31. [31]

      (31) Sun, J.; Xie,W.; Yuan, L.; Zhang, K.;Wang, Q. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 1999, 64, 157.

    32. [32]

      (32) He, B. L.; Zhou,W. J.; Bao, S. J.; Liang, Y. Y.; Li, H. L. Electrochim. Acta 2007, 52, 3286.  


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(1353)
  • Abstract views(2633)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return