Citation: HU Xiao-Yan, LI Chun-Yi, YANG Chao-He. Influences of V2O5 Loadings on V2O5/Al2O3 Oxidative Activation Performances for n-Heptane Catalytic Cracking[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2209-2216. doi: 10.3866/PKU.WHXB20110806 shu

Influences of V2O5 Loadings on V2O5/Al2O3 Oxidative Activation Performances for n-Heptane Catalytic Cracking

  • Received Date: 14 March 2011
    Available Online: 10 June 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2006CB202505)资助 (973) (2006CB202505)

  • X-ray diffraction (XRD), nitrogen adsorption-desorption, ammonia-temperature programmed desorption (NH3-TPD), and pyridine-Fourier transform infrared (pyridine-FT-IR) spectroscopy analyses were performed to characterize V2O5/Al2Ox with different V2O5 loadings. We conclude that a 20%-25% (w) V2O5 loading corresponds to the monolayer coverage of VOx units over the surface of V2O5/Al2O3 according to the VOx unit surface density values. The impregnation of V2O5 led to a decrease in the Lewis acidity of the alumina and the formation of Brønsted acid sites, which resulted from the V―OH groups of the oxidized VOx units. With an increase in V2O5 loading the amount of Brønsted acid sites increased and reached a maximum at a V2O5 loading of about 20%. The influence of V2O5 loading in V2O5/Al2O3 on the oxidative activation performance during n-heptane catalytic cracking was studied. The results show that the highest promotion was obtained upon introducing V2O5/Al2O3 with a 20%-25% V2O5 loading into the HZSM-5 equilibrium catalyst. V2O5/Al2O3 (20%-25% V2O5) had a monolayer coverage of VOx units over its surface and it provided the largest amount of surface lattice oxygen and thus the strongest oxidative activation toward n-heptane was achieved. The performance decreased when the V2O5 loading increased further because of the inhibited participation of surface lattice oxygen in the reaction, which was caused by the formation of bulk V2O5 and AlVO4.
  • 加载中
    1. [1]

      (1) Corma, A.; Melo, F. V.; Sauvanaud, L.; Ortega, F. J. Appl. Catal. A 2004, 265, 195.  

    2. [2]

      (2) Hu, X. Y.; Li, C. Y.; Yang, C. H. Acta Phys. ?Chim. Sin. 2010, 26, 3291. [胡晓燕, 李春义, 杨朝合. 物理化学学报, 2010, 26, 3291.]

    3. [3]

      (3) Liu, X. B.; Xu, H. Y.; Li,W. Z.; Chen, Y. X. Acta Petrolei Sinica (Petro. Pro. Sec.) 2004, 20, 88. [刘雪斌, 徐恒泳, 李文钊, 陈燕馨. 石油学报: 石油加工, 2004, 20, 88.]

    4. [4]

      (4) Zhang, C. L.; Zhu, H. O.; Liu, X. B.; Li,W. Z.; Xu, H. Y. J. Fuel Chem. Tech. 2006, 34, 439. [张存龙, 朱海欧, 刘雪斌, 李文钊, 徐恒泳. 燃料化学学报, 2006, 34, 439.]

    5. [5]

      (5) Hu, X. Y.; Li, C. Y.; Yang, C. H. Catal. Today 2010, 158, 504.  

    6. [6]

      (6) Haber, J. Catal. Today 2009, 142, 100.  

    7. [7]

      (7) Abon, M.; Volta, J. C. Appl. Catal. A 1997, 157, 173.  

    8. [8]

      (8) Centi, G.; Perathoner, S.; Trifirb, F. Appl. Catal. A 1997, 157, 143.  

    9. [9]

      (9) Shishido, T.; Konishi, T.; Matsuura, I.;Wang, Y.; Takaki, K.; Takehira, K. Catal. Today 2001, 41, 77.

    10. [10]

      (10) Isaguliants, G. V.; Belomestnykh, I. P. Catal. Today 2005, 100, 441.  

    11. [11]

      (11) Kung, H. H. Adv. Catal. 1994, 40, 1.  

    12. [12]

      (12) Kung, H. H.; Kung, M. C. Appl. Catal. A 1997, 157, 105.  

    13. [13]

      (13) Blasco, T.; Nieto, J. M. L. Appl. Catal. A 1997, 157, 117.  

    14. [14]

      (14) Wielers, A. F. H.; Vaarkamp, M.; Post, M. F. M. J. Catal. 1991, 127, 51.  

    15. [15]

      (15) Wachs, I. E.;Weckhuysen, B. M. Appl. Catal. A 1997, 157, 67.  

    16. [16]

      (16) Grzybowska-Swierkosz, B. Appl. Catal. A 1997, 157, 409.  

    17. [17]

      (17) Ferreira, M. L.; Volpe, M. J. Mol. Catal. A 1999, 149, 33.  

    18. [18]

      (18) Christodoulakis, A.; Machli, M.; Lemonidou, A. A.; Boghosian, S. J. Catal. 2004, 222, 293.  

    19. [19]

      (19) Steinfeldt, N.; Müller, D.; Berndt, H. Appl. Catal. A 2004, 272, 201.  

    20. [20]

      (20) Wu, Z.; Kim, H. S.; Stair, P. C.; Rugmini, S.; Jackson, S. D. J. Phys. Chem. B 2005, 109, 2793.  

    21. [21]

      (21) Martínez-Huerta, M. V.; Gao, X.; Tian, H.;Wachs, I. E.; Fierro, J. L. G.; Ba?ares, M. A. Catal. Today 2006, 118, 279.  

    22. [22]

      (22) Pak, C.; Bell, A. T.; Tilley, T. D. J. Catal. 2002, 206, 49.  

    23. [23]

      (23) Balderas-Tapia, L.; Hernández-Pérez, I.; Schacht, P.; C?rdova, I. R.; Aguilar-Ríos, G. G. Catal. Today 2005, 107-108, 371.

    24. [24]

      (24) Kim, T.;Wachs, I. E. J. Catal. 2008, 197, 133.

    25. [25]

      (25) Argyle, M. D.; Chen, K.; Bell, A. T.; Iglesia, E. J. Catal. 2002, 208, 139.  

    26. [26]

      (26) Khader, M. M. J. Mol. Catal. A 1995, 104, 87.  

    27. [27]

      (27) Turek, A. M.;Wachs. I. E. J. Phys. Chem. 1992, 96, 5000.  

  • 加载中
    1. [1]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    5. [5]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    6. [6]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(792)
  • Abstract views(2365)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return