Citation: LI Xue-Fei, ZHAO Yun, JIAO Qing-Ze, LI Han-Sheng, WU Hong-Yu, LIU Hong-Bo, CUI Wen-Jia. Preparation of One-Dimensional Titanate Nanomaterials Using Different Titania Sources[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1996-2000. doi: 10.3866/PKU.WHXB20110805 shu

Preparation of One-Dimensional Titanate Nanomaterials Using Different Titania Sources

  • Received Date: 1 March 2011
    Available Online: 10 June 2011

    Fund Project: 北京理工大学基础研究基金(20070542001)资助项目 (20070542001)

  • One-dimensional titanate nanomaterials were synthesized by a hydrothermal reaction using different titania sources. The morphology and crystal structure of the one-dimensional titanate nanomaterials were greatly affected by the primary particle size and crystal structure of the starting materials. The smaller initial particle size of the reactant led to a faster phase transformation of the products. The pure anatase titania favored the formation of titanate nanotubes, while the mixture of anatase titania and a small amount of rutile titania as a starting material favored the further transformation of nanotubes to nanowires or nanoribbons and promoted the phase transformation.

  • 加载中
    1. [1]

      (1) Seo, M. H.; Yuasa, M.; Kida, T.; Huh, J. S.; Shimanoe, K.; Yamazoe, N. Sens. Actuator B-Chem. 2009, 137 (2), 513.  

    2. [2]

      (2) Han, C. H.; Hong, D.W.; Kim, I. J.; Gwak, J.; Han, S. D.; Singh, K. C. Sens. Actuator B-Chem. 2007, 128 (1), 320.  

    3. [3]

      (3) Hong, D. U.; Han, C. H.; Park, S. H.; Kim, I. J.; Gwak, J.; Han, S. D.; Kim, H. J. Curr. Appl. Phys. 2009, 9 (1), 172.  

    4. [4]

      (4) Kim, H. S.; Moon,W. T.; Jun, Y. K.; Hong, S. H. Sens. Actuator B-Chem. 2006, 120 (1), 63.  

    5. [5]

      (5) Qamar, M.; Yoon, C. R.; Oh, H. J.; Lee, N. H.; Park, K.; Kim, D. H.; Lee, K. S.; Lee,W. J.; Kim, S. J. Catal. Today 2008, 131 (1-4), 3.  

    6. [6]

      (6) Zhao, Y.; Zhao, T. Y.; Liu, Z. Y.; Nakata, K.; Nishimoto, S.; Murakami, T.; Jiang, L.; Fujishima, A. J. Mater. Chem. 2010, 20 (24), 5095.  

    7. [7]

      (7) Yu, J. G.; Yu, H. G.; Cheng, B.; Trapalis, C. J. Mol. Catal. A-Chem. 2006, 249 (1-2), 135.  

    8. [8]

      (8) Li, Q. Y.; Lu, G. X. J. Power Sources 2008, 185 (1), 577.  

    9. [9]

      (9) Uchida, S.; Chiba, R.; Tomiha, M.; Masaki, N.; Shirai, M. Electrochemistry 2002, 70 (6), 418.

    10. [10]

      (10) Hao, Y. Z.;Wang, L. G. Acta Chim. Sin. 2008, 66 (7), 757. [郝彦忠, 王利刚. 化学学报, 2008, 66 (7), 757.]

    11. [11]

      (11) Li, X. D.; Zhang, D.W.; Sun, Z.; Chen, Y.W.; Huang, S. M. Microelectron. J. 2009, 40 (1), 108.  

    12. [12]

      (12) ng, D.; Grimes, C. A.; Varghese, O. K.; Hu,W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16 (12), 3331.  

    13. [13]

      (13) Hoyer, P. Langmuir 1996, 12 (6), 1411.  

    14. [14]

      (14) Imai, H.; Takei, Y.; Shimizu, K.; Matsuda, M.; Hirashima, H. J. Mater. Chem. 1999, 9 (12), 2971.  

    15. [15]

      (15) Cui, Y. T.;Wang, J. S.; Li, H. Y.;Wang, Z. Z. Chin. J. Inorg. Chem. 2009, 25 (7), 1274. [崔云涛, 王金淑, 李洪义, 王珍珍. 无机化学学报, 2009, 25 (7), 1274.]

    16. [16]

      (16) Chen,W.; Sun, X. D.;Weng, D. Mater. Lett. 2006, 60 (29-30), 3477.  

    17. [17]

      (17) Lee, J.; Ju, H.; Lee, J. K.; Kim, H. S.; Lee, J. Electrochem. Commun. 2010, 12 (2), 210.  

    18. [18]

      (18) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14 (12), 3160.  

    19. [19]

      (19) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11 (15), 1307.  

    20. [20]

      (20) Chen, Q.; Zhou,W. Z.; Du, G. H.; Peng, L. M. Adv. Mater. 2002, 14 (17), 1208.  

    21. [21]

      (21) Horvath, E.; Kukovecz, A.; Konya, Z.; Kiricsi, I. Chem. Mat. 2007, 19 (4), 927.  

    22. [22]

      (22) Poudel, B.;Wang,W. Z.; Dames, C.; Huang, J. Y.; Kunwar, S.; Wang, D. Z.; Banerjee, D.; Chen, G.; Ren, Z. F. Nanotechnology 2005, 16 (9), 1935.  

    23. [23]

      (23) Huang, J. Q.; Cao, Y. G.; Huang, Q. F.; He, H.; Liu, Y.; Guo,W.; Hong, M. C. Cryst. Growth Des. 2009, 9 (8), 3632.  

    24. [24]

      (24) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang,W. F.; Yang, Z. Y.; Wang, N. Appl. Phys. Lett. 2003, 82 (2), 281.  

    25. [25]

      (25) Ma, R. Z.; Bando, Y.; Sasaki, T. Chem. Phys. Lett. 2003, 380 (5-6), 577.  

    26. [26]

      (26) Yuan, Z. Y.; Su, B. L. Colloid Surf. A-Physicochem. Eng. Asp. 2004, 241 (1-3), 173.  

    27. [27]

      (27) Afshar, S.; Hakamizadeh, M. J. Exp. Nanosci. 2009, 4 (1), 77.  

    28. [28]

      (28) Poudel, B.;Wang,W. Z.; Dames, C.; Huang, J. Y.; Kunwar, S.; Wang, D. Z.; Banerjee, D.; Chen, G.; Ren, Z. F. Mater. Res. Soc. Symp. Proc. 2005, 836, 23.

    29. [29]

      (29) Morgan, D. L.;Waclawik, E. R.; Frost, R. L. Synthesis and characterisation of titania nanotubes: Effect of phase and crystallite size on nanotube formation. In Advanced Materials and Processing IV, 4th International Conference on Advanced Materials and Processing, Hamilton, New Zealand, Dec 10-13, 2006; Zhang, D., Pickering, K., Gabbitas, B., Cao, P., Langdon, A., Torrens, R., Verbeek, J., Eds.; Trans Tech Publications LTD: Switzerland, 2007; 211-214.

    30. [30]

      (30) Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K. Chem. Phys. Lett. 2002, 365 (5-6), 427.  

    31. [31]

      (31) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.;Walsh, F. C. J. Mater. Chem. 2004, 14 (22), 3370.  

    32. [32]

      (32) Chen,W. P.; Guo, X. Y.; Zhang, S. L.; Jin, Z. S. J. Nanopart. Res. 2007, 9 (6), 1173.  

    33. [33]

      (33) Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.;Wu, F.; Ringer, S. P.; Song, D. Y. Adv. Funct. Mater. 2005, 15 (8), 1310.  

    34. [34]

      (34) Penga, H. R.; Lia, G. C.; Zhang, Z. K. Mater. Lett. 2005, 59 (10), 1142.  


  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    7. [7]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(1196)
  • Abstract views(2733)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return