Citation: ZHI Ze-Yong, LIU Peng-Cheng, HUANG Yan-Yi, ZHAO Xin-Sheng. A Microfluidic Mixer for Single-Molecule Kinetics Experiments[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1990-1995. doi: 10.3866/PKU.WHXB20110804 shu

A Microfluidic Mixer for Single-Molecule Kinetics Experiments

  • Received Date: 27 April 2011
    Available Online: 9 June 2011

    Fund Project: 国家自然科学基金(20733001, 20973015) (20733001, 20973015)国家重点基础研究发展规划项目(973) (2006CB910300, 2010CB912302)资助 (973) (2006CB910300, 2010CB912302)

  • We designed and built a microfluidic mixer based on the principle of hydrodynamic focusing verned by Navier-Stokes equation for single-molecule kinetics experiments. The mixer is a cast of poly(dimethylsiloxane) (PDMS) sealed with transparent fused-silica coverglass, which results in low fluorescence background and broad biological compatibility and this enables single-molecule fluorescence detection under nonequilibrium conditions. The pressure regulated sample delivery system is convenient for loading a sample and allows for precise and stable flow velocity control. The combination of microfluidic mixer and single-molecule fluorescence resonance energy transfer (smFRET) allows us to measure the time course of the distribution of the smFRET efficiency in protein folding. We used the fact that denatured protein collapses much faster than the mixing process to characterize the mixing time using donor and acceptor dyes labeled staphylococcal nuclease (SNase) as an smFRET efficiency indicator. By monitoring the smFRET efficiency of denatured SNase during the course of mixing, we determined that the mixing time was 150 ms under conditions suitable for single-molecule detection.

  • 加载中
    1. [1]

      (1) Wolynes, P. G.; Onuchic, J. N.; Thirumalai, D. Science 1995, 267, 1619.  

    2. [2]

      (2) Oliveberg, M.;Wolynes, P. G. Q. Rev. Biophys. 2005, 38, 245.  

    3. [3]

      (3) Ferreon, A. C. M.; Deniz, A. A. BBA-Proteins Proteomics 2011, In Press.

    4. [4]

      (4) Haas, E. ChemPhysChem 2005, 6, 858.  

    5. [5]

      (5) Bilsel, O.; Matthews, C. R. Curr. Opin. Struct. Biol. 2006, 16, 86.  

    6. [6]

      (6) Ha, T.; Enderle, T.; Ogletree, D. F.; Chemla, D. S.; Selvin, P. R.; Weiss, S. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 6264.  

    7. [7]

      (7) Weiss, S. Science 1999, 283, 1676.  

    8. [8]

      (8) Deniz, A. A.; Mukhopadhyay, S.; Lemke, E. A. J. R. Soc. Interface 2008, 5, 15.  

    9. [9]

      (9) Deniz, A. A.; Laurence, T. A.; Beligere, G. S.; Dahan, M.; Martin, A. B.; Chemla, D. S.; Dawson, P. E.; Schultz, P. G.; Weiss, S. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5179.  

    10. [10]

      (10) Schuler, B.; Lipman, E. A.; Eaton,W. A. Nature 2002, 419, 743.  

    11. [11]

      (11) Hoffmann, A.; Kane, A.; Nettels, D.; Hertzog, D. E.; Baumgartel, P.; Lengefeld, J.; Reichardt, G.; Horsley, D. A.; Seckler, R.; Bakajin, O.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 105.  

    12. [12]

      (12) Muller-Spath, S.; Soranno, A.; Hirschfeld, V.; Hofmann, H.; Ruegger, S.; Reymond, L.; Nettels, D.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 14609.  

    13. [13]

      (13) Hertzog, D. E.; Michalet, X.; Jager, M.; Kong, X. X.; Santia , J. G.;Weiss, S.; Bakajin, O. Anal. Chem. 2004, 76, 7169.  

    14. [14]

      (14) Hertzog, D. E.; Ivorra, B.; Mohammadi, B.; Bakajin, O.; Santia , J. G. Anal. Chem. 2006, 78, 4299.  

    15. [15]

      (15) Park, H. Y.; Qiu, X. Y.; Rhoades, E.; Korlach, J.; Kwok, L.W.; Zipfel,W. R.;Webb,W.W.; Pollack, L. Anal. Chem. 2006, 78, 4465.  

    16. [16]

      (16) Lapidus, L. J.; Yao, S. H.; McGarrity, K. S.; Hertzog, D. E.; Tubman, E.; Bakajin, O. Biophys. J. 2007, 93, 218.  

    17. [17]

      (17) Park, H. Y.; Kim, S. A.; Korlach, J.; Rhoades, E.; Kwok, L.W.; Zipfell,W. R.;Waxham, M. N.;Webb,W.W.; Pollack, L. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 542.  

    18. [18]

      (18) Guo, S.; Xue, M. Q.; Qian, M. X.; Cao, T. B.; Zhao, X. S. Acta Phys. -Chim. Sin. 2007, 23, 1827. [郭索, 薛面起, 钱民协, 曹廷炳, 赵新生. 物理化学学报, 2007, 23, 1827.]  

    19. [19]

      (19) Knight, J. B.; Vishwanath, A.; Brody, J. P.; Austin, R. H. Phys. Rev. Lett. 1998, 80, 3863.  

    20. [20]

      (20) Hamadani, K. M.;Weiss, S. Biophys. J. 2008, 95, 352.  

    21. [21]

      (21) Pfeil, S. H.;Wickersham, C. E.; Hoffmann, A.; Lipman, E. A. Rev. Sci. Instrum. 2009, 80, 055105.  

    22. [22]

      (22) Gambin, Y.; VanDelinder, V.; Ferreon, A. C. M.; Lemke, E. A.; Groisman, A.; Deniz, A. A. Nat. Methods 2011, 8, 239.  

    23. [23]

      (23) Maki, K.; Cheng, H.; Dolgikh, D. A.; Roder, H. J. Mol. Biol. 2007, 368, 244.  

    24. [24]

      (24) Lipman, E. A.; Schuler, B.; Bakajin, O.; Eaton,W. A. Science 2003, 301, 1233.  

    25. [25]

      (25) Ye, K. Q.;Wang, J. F. J. Mol. Biol. 2001, 307, 309.  

    26. [26]

      (26) Kim, S. J.; Blainey, P. C.; Schroeder, C. M.; Xie, X. S. Nat. Methods 2007, 4, 397.

    27. [27]

      (27) Krichevsky, O.; Bonnet, G. Rep. Prog. Phys. 2002, 65, 251.  

    28. [28]

      (28) Chen, X. D.; Zhou, Y.; Qu, P.; Zhao, X. S. J. Am. Chem. Soc. 2008, 130, 16947.  

    29. [29]

      (29) Sherman, E.; Haran, G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11539.  

    30. [30]

      (30) Liu, P. C.; Meng, X. L.; Qu, P.; Zhao, X. S.;Wang, C. C. J. Phys. Chem. B 2009, 113, 12030.  

    31. [31]

      (31) White, F. Viscous Fluid Flow, 2nd ed.; McGraw Hill: Boston, Massachusetts, 1991.

    32. [32]

      (32) sch, M.; Blom, H.; Holm, J.; Heino, T.; Rigler, R. Anal. Chem. 2000, 72, 3260.  

    33. [33]

      (33) Kuricheti, K. K.; Buschmann, V.;Weston, K. D. Appl. Spectrosc. 2004, 58, 1180.  

    34. [34]

      (34) Nie, S. M.; Chiu, D. T.; Zare, R. N. Anal. Chem. 1995, 67, 2849.  

    35. [35]

      (35) Gell, C.; Brockwell, D.; Smith, A. Handbook of Single Molecule Fluorescence Spectroscopy; Oxford University: Oxford, 2006.

    36. [36]

      (36) Nettels, D.; pich, I. V.; Hoffmann, A.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2655.


  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    6. [6]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    14. [14]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    17. [17]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    20. [20]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

Metrics
  • PDF Downloads(840)
  • Abstract views(2475)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return