Citation: ZHI Ze-Yong, LIU Peng-Cheng, HUANG Yan-Yi, ZHAO Xin-Sheng. A Microfluidic Mixer for Single-Molecule Kinetics Experiments[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1990-1995. doi: 10.3866/PKU.WHXB20110804 shu

A Microfluidic Mixer for Single-Molecule Kinetics Experiments

  • Received Date: 27 April 2011
    Available Online: 9 June 2011

    Fund Project: 国家自然科学基金(20733001, 20973015) (20733001, 20973015)国家重点基础研究发展规划项目(973) (2006CB910300, 2010CB912302)资助 (973) (2006CB910300, 2010CB912302)

  • We designed and built a microfluidic mixer based on the principle of hydrodynamic focusing verned by Navier-Stokes equation for single-molecule kinetics experiments. The mixer is a cast of poly(dimethylsiloxane) (PDMS) sealed with transparent fused-silica coverglass, which results in low fluorescence background and broad biological compatibility and this enables single-molecule fluorescence detection under nonequilibrium conditions. The pressure regulated sample delivery system is convenient for loading a sample and allows for precise and stable flow velocity control. The combination of microfluidic mixer and single-molecule fluorescence resonance energy transfer (smFRET) allows us to measure the time course of the distribution of the smFRET efficiency in protein folding. We used the fact that denatured protein collapses much faster than the mixing process to characterize the mixing time using donor and acceptor dyes labeled staphylococcal nuclease (SNase) as an smFRET efficiency indicator. By monitoring the smFRET efficiency of denatured SNase during the course of mixing, we determined that the mixing time was 150 ms under conditions suitable for single-molecule detection.

  • 加载中
    1. [1]

      (1) Wolynes, P. G.; Onuchic, J. N.; Thirumalai, D. Science 1995, 267, 1619.  

    2. [2]

      (2) Oliveberg, M.;Wolynes, P. G. Q. Rev. Biophys. 2005, 38, 245.  

    3. [3]

      (3) Ferreon, A. C. M.; Deniz, A. A. BBA-Proteins Proteomics 2011, In Press.

    4. [4]

      (4) Haas, E. ChemPhysChem 2005, 6, 858.  

    5. [5]

      (5) Bilsel, O.; Matthews, C. R. Curr. Opin. Struct. Biol. 2006, 16, 86.  

    6. [6]

      (6) Ha, T.; Enderle, T.; Ogletree, D. F.; Chemla, D. S.; Selvin, P. R.; Weiss, S. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 6264.  

    7. [7]

      (7) Weiss, S. Science 1999, 283, 1676.  

    8. [8]

      (8) Deniz, A. A.; Mukhopadhyay, S.; Lemke, E. A. J. R. Soc. Interface 2008, 5, 15.  

    9. [9]

      (9) Deniz, A. A.; Laurence, T. A.; Beligere, G. S.; Dahan, M.; Martin, A. B.; Chemla, D. S.; Dawson, P. E.; Schultz, P. G.; Weiss, S. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5179.  

    10. [10]

      (10) Schuler, B.; Lipman, E. A.; Eaton,W. A. Nature 2002, 419, 743.  

    11. [11]

      (11) Hoffmann, A.; Kane, A.; Nettels, D.; Hertzog, D. E.; Baumgartel, P.; Lengefeld, J.; Reichardt, G.; Horsley, D. A.; Seckler, R.; Bakajin, O.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 105.  

    12. [12]

      (12) Muller-Spath, S.; Soranno, A.; Hirschfeld, V.; Hofmann, H.; Ruegger, S.; Reymond, L.; Nettels, D.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 14609.  

    13. [13]

      (13) Hertzog, D. E.; Michalet, X.; Jager, M.; Kong, X. X.; Santia , J. G.;Weiss, S.; Bakajin, O. Anal. Chem. 2004, 76, 7169.  

    14. [14]

      (14) Hertzog, D. E.; Ivorra, B.; Mohammadi, B.; Bakajin, O.; Santia , J. G. Anal. Chem. 2006, 78, 4299.  

    15. [15]

      (15) Park, H. Y.; Qiu, X. Y.; Rhoades, E.; Korlach, J.; Kwok, L.W.; Zipfel,W. R.;Webb,W.W.; Pollack, L. Anal. Chem. 2006, 78, 4465.  

    16. [16]

      (16) Lapidus, L. J.; Yao, S. H.; McGarrity, K. S.; Hertzog, D. E.; Tubman, E.; Bakajin, O. Biophys. J. 2007, 93, 218.  

    17. [17]

      (17) Park, H. Y.; Kim, S. A.; Korlach, J.; Rhoades, E.; Kwok, L.W.; Zipfell,W. R.;Waxham, M. N.;Webb,W.W.; Pollack, L. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 542.  

    18. [18]

      (18) Guo, S.; Xue, M. Q.; Qian, M. X.; Cao, T. B.; Zhao, X. S. Acta Phys. -Chim. Sin. 2007, 23, 1827. [郭索, 薛面起, 钱民协, 曹廷炳, 赵新生. 物理化学学报, 2007, 23, 1827.]  

    19. [19]

      (19) Knight, J. B.; Vishwanath, A.; Brody, J. P.; Austin, R. H. Phys. Rev. Lett. 1998, 80, 3863.  

    20. [20]

      (20) Hamadani, K. M.;Weiss, S. Biophys. J. 2008, 95, 352.  

    21. [21]

      (21) Pfeil, S. H.;Wickersham, C. E.; Hoffmann, A.; Lipman, E. A. Rev. Sci. Instrum. 2009, 80, 055105.  

    22. [22]

      (22) Gambin, Y.; VanDelinder, V.; Ferreon, A. C. M.; Lemke, E. A.; Groisman, A.; Deniz, A. A. Nat. Methods 2011, 8, 239.  

    23. [23]

      (23) Maki, K.; Cheng, H.; Dolgikh, D. A.; Roder, H. J. Mol. Biol. 2007, 368, 244.  

    24. [24]

      (24) Lipman, E. A.; Schuler, B.; Bakajin, O.; Eaton,W. A. Science 2003, 301, 1233.  

    25. [25]

      (25) Ye, K. Q.;Wang, J. F. J. Mol. Biol. 2001, 307, 309.  

    26. [26]

      (26) Kim, S. J.; Blainey, P. C.; Schroeder, C. M.; Xie, X. S. Nat. Methods 2007, 4, 397.

    27. [27]

      (27) Krichevsky, O.; Bonnet, G. Rep. Prog. Phys. 2002, 65, 251.  

    28. [28]

      (28) Chen, X. D.; Zhou, Y.; Qu, P.; Zhao, X. S. J. Am. Chem. Soc. 2008, 130, 16947.  

    29. [29]

      (29) Sherman, E.; Haran, G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11539.  

    30. [30]

      (30) Liu, P. C.; Meng, X. L.; Qu, P.; Zhao, X. S.;Wang, C. C. J. Phys. Chem. B 2009, 113, 12030.  

    31. [31]

      (31) White, F. Viscous Fluid Flow, 2nd ed.; McGraw Hill: Boston, Massachusetts, 1991.

    32. [32]

      (32) sch, M.; Blom, H.; Holm, J.; Heino, T.; Rigler, R. Anal. Chem. 2000, 72, 3260.  

    33. [33]

      (33) Kuricheti, K. K.; Buschmann, V.;Weston, K. D. Appl. Spectrosc. 2004, 58, 1180.  

    34. [34]

      (34) Nie, S. M.; Chiu, D. T.; Zare, R. N. Anal. Chem. 1995, 67, 2849.  

    35. [35]

      (35) Gell, C.; Brockwell, D.; Smith, A. Handbook of Single Molecule Fluorescence Spectroscopy; Oxford University: Oxford, 2006.

    36. [36]

      (36) Nettels, D.; pich, I. V.; Hoffmann, A.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2655.


  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    4. [4]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    5. [5]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    9. [9]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    10. [10]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    11. [11]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    12. [12]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(840)
  • Abstract views(2516)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return