Citation: ZHAO Jing, SUN Yue, LI Yong-Jun, LIANG Ren. Preparation of ‘Sandwich-Like’ Au/Pt Composite Multilayer Films for Methanol Electrooxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1868-1874. doi: 10.3866/PKU.WHXB20110803 shu

Preparation of ‘Sandwich-Like’ Au/Pt Composite Multilayer Films for Methanol Electrooxidation

  • Received Date: 11 April 2011
    Available Online: 8 June 2011

    Fund Project: 国家自然科学基金(20703016) (20703016) 湖南省科技计划(2010FJ6030) (2010FJ6030)固体表面物理化学国家重点实验室(厦门大学)开放课题经费资助 (厦门大学)

  • Pt/Au composite monolayer films were fabricated by combining interfacial assembly and under-potential deposition (UPD) with redox replacement. Based on the Pt/Au composite monolayers, an organic linker-free method was proposed for the fabrication of sandwich-like Pt/Au composite multilayer films: (Pt/Au)n, Ptm/Au, and (Pt3/Au)k (n, m, or k represents the layer number). Electron microscopy was used to characterize the morphologies of the Au monolayer films and the Pt/Au composite multilayer films. For each type of composite multilayer films, a common characteristic was that the effective electroactive areas increased with an increase in the layer number. Additionally, the electrocatalytic activities of the composite multilayer films for methanol electrooxidation are systematically discussed by examining the catalytic current densities and its tolerance toward carbonaceous species. For the same series of composite multilayer films (Pt/Au)3, Pt3/Au, and (Pt3/Au)2 showed a higher catalytic current density than bulk Pt (Ptbulk). Among the three composite multilayer films, (Pt/Au)3 showed the best catalytic performance in terms of the current density and tolerance toward carbonaceous species. The tolerance of (Pt/Au)3 to carbonaceous species was found to be better than that of the commercial Pt/C catalyst. This better electrocatalytic activity may be attributed to the maximum synergistic effect between Au and Pt, which depends on the Pt:Au atomic ratio and also the arrangement of Pt and Au nanoparticles.

  • 加载中
    1. [1]

      (1) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.  

    2. [2]

      (2) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.; Wilkinson, D. P. J. Power Sources 2006, 155, 95.  

    3. [3]

      (3) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.  

    4. [4]

      (4) Iwasita, T.; Hoster, H.; John-Anacker, A.; Lin,W. F.; Vielstich, W. Langmuir 1999, 16, 522.

    5. [5]

      (5) Liu, Z.; Reed, D.; Kwon, G. M.; Shamsuzzoha, D.; Nikles, E. J. Phys. Chem. C 2007, 111, 14223.  

    6. [6]

      (6) Zhou, S. G.; McIlwrath, K.; Jackson, G.; Eichhorn, B. J. Am. Chem. Soc. 2006, 128, 1780.  

    7. [7]

      (7) Guo, S. J.; Zhai, J. F.; Fang, Y.X.; Dong, S. J.;Wang, E. Chem. Asian J. 2008, 3, 1156.  

    8. [8]

      (8) Zhao, D.; Xu, B. Q. Angew. Chem. Int. Edit. 2006, 45, 4955.  

    9. [9]

      (9) Kiani, A.; Fard, E. N. Electrochim. Acta 2009, 54, 7254.  

    10. [10]

      (10) Du, Y.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2009, 11, 1717.  

    11. [11]

      (11) Wang, J. J.; Yin, G. P.;Wang, G. J.;Wang, Z. B.; Gao, Y. Z. Electrochem. Commun. 2008, 10, 831.  

    12. [12]

      (12) Markovic, N. M.; Ross, P. N. Surf. Sci. Rep. 2002, 45, 117.  

    13. [13]

      (13) Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.;Wang, L. Y.; Zhong, C. J. Catal. Today 2007, 122, 378.  

    14. [14]

      (14) Zeng, J. H.; Yang, J.; Lee, J. Y.; Zhou,W. J. J. Phys. Chem. B 2006, 110, 24606.  

    15. [15]

      (15) Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. J. Am. Chem. Soc. 2005, 127, 12480.  

    16. [16]

      (16) Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Edit. 2005, 44, 2132.  

    17. [17]

      (17) Du, B. C.; Tong,Y. Y. J. Phys. Chem. B 2005, 109, 17775.  

    18. [18]

      (18) Hammer, B.; Morikawa, Y.; Norskov, J. K. Phys. Rev. Lett. 1996, 76, 2141.  

    19. [19]

      (19) Hammer, B.; Norskov, J. K. Adv. Catal. 2000, 45, 71.  

    20. [20]

      (20) Park, S.; Yang, P.; Corredor, P.;Weaver, M. J. J. Am. Chem. Soc. 2002, 124, 2428.  

    21. [21]

      (21) Aramata, A.; Modern Aspects of Electrochemistry, Vol. 31; Bockris, J. O. M.; White, R. E.; Conway, B. E. Eds, Kluwer Academic Publishers: New York, 1998; pp 181-250.

    22. [22]

      (22) Tang, H.; Chen, J. H.;Wang, M. Y.; Nie, L. H.; Kuang,Y. F.; Yao, S. Z. Appl. Catal. A 2004, 275, 43.  

    23. [23]

      (23) Shin, T. Y.; Yoo, S. H.; Park, S. Chem. Mater. 2008, 20, 5682.  

    24. [24]

      (24) Liu, P. P.; Ge, X. B.;Wang, R. Y.; Ma, H. Y.; Ding,Y. Langmuir 2009, 25, 561.  

    25. [25]

      (25) Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung,Y. E. J. Phys. Chem. C 2007, 111, 19126.  

    26. [26]

      (26) Ge, X.;Wang, R.; Liu, P.; Ding,Y. Chem. Mater. 2007, 19, 5827.  

    27. [27]

      (27) Kumar, S.; Zou, S. Z. Langmuir 2007, 23, 7365.  

    28. [28]

      (28) Patra, S.; Das, J.; Yang, H. Electrochim. Acta 2009, 54, 3441.  

    29. [29]

      (29) Huang, M.; Jin, Y.; Jiang, H.; Sun, X.; Chen, H.; Liu, B.;Wang, E.; Dong, S. J. Phys. Chem. B 2005, 109, 15264.  

    30. [30]

      (30) Li, Y. J.; Huang,W. J.; Sun, S. G. Angew. Chem. Int. Edit. 2006, 45, 2537.  

    31. [31]

      (31) Liu, C.; Li, Y. J.;Wang, M. H.; He, Y.; Yeung, E. S. Nanotechnology 2009, 20, 065604.  

    32. [32]

      (32) Wang, M. H.; Li, Y. J.; Xie, Z. X.; Liu, C.; Yeung, E. S. Mater. Chem. Phys. 2010, 119, 153.  

    33. [33]

      (33) Wang, M. H.; Hu, J.W.; Li, Y. J.; Yeung, E. S. Nanotechnology 2010, 21, 145608.  

    34. [34]

      (34) Li, Y. J.; Liu, C.; Yang, M. H.; He, Y.; Yeung, E. S. J. Electroanal. Chem. 2008, 622, 103.  

    35. [35]

      (35) Frens, G. Nat. Phys. Sci. 1973, 241, 20.

    36. [36]

      (36) Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T.; Kondo, T. J. Phys. Chem. B 1997, 101, 7566.  

    37. [37]

      (37) Kolb, D. M. Adv. Electrochem. Electrochem. Eng. 1978, 11, 125.

    38. [38]

      (38) Mrozek, M. F.; Xie, Y.;Weaver, M. J. Anal. Chem. 2001, 73, 5953.  

    39. [39]

      (39) Brankovic, S. R.;Wang, J. X.; Adzic, R. R. Surf. Sci. 2001, 474, L173.

    40. [40]

      (40) Maillard, F.; Eikerling, M.; Cherstiouk, O. V.; Schreier, S.; Savinova, E.; Stimming, U. Faraday Discuss. 2004, 125, 357.  

    41. [41]

      (41) Mayrhofer, K. J. J.; Arenz, M.; Blizanac, B. B.; Stamenkovic, V.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2005, 50, 5144.  

    42. [42]

      (42) Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2005, 127, 6819.  

    43. [43]

      (43) Biegler, T.; Rand, D. A. J.;Woods, R. J. Electroanal. Chem. 1971, 29, 269.  

    44. [44]

      (44) Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.  

    45. [45]

      (45) Chang, S. C.; Ho, Y.;Weaver, M. J. Surf. Sci. 1992, 265, 81.  

    46. [46]

      (46) Park, S.; Xie, Y.;Weaver, M. J. Langmuir 2002, 18, 5792.  

    47. [47]

      (47) Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.;Wang, J. X.; Hanson, J.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 22701.  

    48. [48]

      (48) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955.  


  • 加载中
    1. [1]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(966)
  • Abstract views(2650)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return