Citation: BASLAK Canan, BIN L Haluk, COSKUN Ahmet, ATALAY Tevfik. Synthesis of a Novel Thiadiazine Derivative and Electrochemical Properties for Pb2+ Transfer across Water/1,2-Dichloroethane Interface[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1859-1862. doi: 10.3866/PKU.WHXB20110801 shu

Synthesis of a Novel Thiadiazine Derivative and Electrochemical Properties for Pb2+ Transfer across Water/1,2-Dichloroethane Interface

  • Received Date: 14 March 2011
    Available Online: 7 June 2011

    Fund Project: The project was supported by the Scientific Research Fund of Selcuk University, Turkey (BAP-07201027). (BAP-07201027)

  • The transfer of Pb2+ facilitated by interfacial complexation with 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin-2-amine (PPTA) at the polarized water/1,2-dicholoroethane (1,2-DCE) interface was investigated by cyclic voltammetry. We synthesized the thiadiazine derivative, PPTA, firstly. The transfer was performed at different metal concentrations and scan rates, and the obtained voltammetric transfer peaks toward Pb2+ ion over other divalent cations (Zn2+, Co2+, Ni2+, Cd2+, Hg2+, and Cu2+) were reversible. The dependence of the half-wave potentials of the Pb2+ ion on the concentration of PPTA in the organic phase indicates that the ion transfer is facilitated by the formation of 1:2 (metal:ligand) complex in the organic phase with the association constant (lgβ2) of (17.1±0.2).

  • 加载中
    1. [1]

      (1) Ferreira, E. S.; Garau, A.; Lippolis, V.; Pereira, C. M.; Silva, F. J. Electroanal. Chem. 2006, 587, 155.  

    2. [2]

      (2) Katano, H.; Kuboyama, H.; Senda, M. J. Electroanal. Chem. 2000, 483, 117.  

    3. [3]

      (3) Bin l, H.; Akgemci, E. G.; Ersoz, M.; Atalay, T. Electroanalysis 2007, 19, 1327.  

    4. [4]

      (4) Shaaban, M. R.; Fuchigami, T. Tetrahedron Lett. 2002, 43, 273.  

    5. [5]

      (5) Zhang, M.; Sun, P.; Chen, Y.; Li, F.; Gao, Z.; Shao, Y. Chin. Sci. Bull. 2003, 48, 1234.

    6. [6]

      (6) Tomaszewski, L.; Reymond, F.; Brevet, P. F.; Girault, H. H. J. Electroanal. Chem. 2000, 483, 135.  

    7. [7]

      (7) Kasumov, V. T.; K?ksal, F. Spectrochim. Acta Part A 2005, 61, 225.  

    8. [8]

      (8) Hatay, I.; Su, B.; Li, F.; Partovi-Nia, R.; Vrubel, H.; Hu, X.; Ersoz, M.; Girault, H. H. Angew. Chem. Int. Edit. 2009, 48, 5139.  

    9. [9]

      (9) Alemu, H. Pure Appl. Chem. 2004, 76, 697.  

    10. [10]

      (10) Herzog, G.; McMahon, B.; Lefoix, M.; Mullins, N. D.; Collins, C. J.; Moynihan, H. A.; Arrigan, D.W. M. J. Electroanal. Chem. 2008, 622, 109.  

    11. [11]

      (11) bry, V.; Ulmeanu, S.; Reymond, F.; Bouchard, G.; Carrupt, P. A.; Testa, B.; Girault, H. H. J. Am. Chem. Soc. 1998, 123, 10684.

    12. [12]

      (12) Koryta, J. Electrochim. Acta 1979, 24, 293.  

    13. [13]

      (13) Shao, Y.; Stewart, A. A.; Girault, H. H. J. Chem. Soc. Faraday Trans. 1991, 87, 2593.  

    14. [14]

      (14) Lagger, G.; Tomaszewski, L.; Osborne, M. D.; Seddon, B. J.; Girault, H. H. J. Electroanal. Chem. 1998, 451, 29.  

    15. [15]

      (15) Prasad, A. R.; Ramalingam, T.; Rao, A.B.; Diwan, P. V.; Sattur, P. B. Eur. J. Med. Chem. 1989, 24, 199.  

    16. [16]

      (16) Fotouhi, L.; Mosavi, M.; Heravia, M. M.; Nematollahi, D. Tetrahedron Lett. 2006, 47, 8553.  

    17. [17]

      (17) Rodr?guez-Fernandez, E.; Manzano, J. L.; Benito, J. J.; Hermosa, R.; Monte, E.; Criado, J. J. J. Inorg. Biochem. 2005, 99, 1558.  

    18. [18]

      (18) El-Daway, M. A.; Omar, A. M. M. E.; Ismail, A. M.; Hazzaa, A. A. B. J. Pharm. Sci. 1983, 72, 45.  

    19. [19]

      (19) Witvrouw, M.; Arranz, M. E.; Pannecouque, C.; Declercq, R.; Jonckheere, H.; Schmit, J. C.; Vandamme, A. M.; Diaz, J. A.; Ingate, S. T.; Desmyter, J.; Esnouf, R.; Van Meervelt, L.; Vega, S.; Balzarini, J.; Clercq, D. Antimicrob. Agents Chemother. 1998, 42, 618.

    20. [20]

      (20) Mahajan, R. K.; Sood, P.; Mahajan, M. P.; Singh, P. Anal. Sci. 2004, 20, 1423.  

    21. [21]

      (21) Adamo, M. A.; Adlington, R. M.; Baldwin J. E.; Day, A. L. Tetrahedron 2004, 60, 841.  

    22. [22]

      (22) Akgemci, E. G.; Bin l, H.; Ersoz, M.; Stibor, I. Electroanalysis 2008, 20, 1354.  

    23. [23]

      (23) Marecek, V.; Samec, Z. J. Electroanal. Chem. 1985, 185, 263.  

    24. [24]

      (24) Koryta, J. Electrochim. Acta 1984, 29, 445.  

    25. [25]

      (25) Yuan, Y.; Gao, Z.; Guo, J.; Shao, Y. J. Electroanal. Chem. 2002, 526, 85.  

    26. [26]

      (26) Katano, H.; Senda, M. Anal. Sci. 1996, 12, 683.  

    27. [27]

      (27) Tetko, V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V. J. Comput. Aid. Mol. Des. 2005, 19, 453.  

    28. [28]

      (28) Steyaert, G.; Lisa, G.; Gaillard, P.; Boss, G.; Reymond, F.; Girault, H. H.; Carrupt, P. A.; Testa, B. J. Chem. Soc. Faraday Trans. 1997, 93, 401.  

    29. [29]

      (29) Shao, Y.; Osborne, M. D.; Girault, H. H. J. Electroanal. Chem. 1991, 318, 101.  

    30. [30]

      (30) Cheng, Y.; Schiffrin, D. J. J. Electroanal. Chem. 1997, 429, 37.  


  • 加载中
    1. [1]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    4. [4]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    5. [5]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    6. [6]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    7. [7]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    8. [8]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    9. [9]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    10. [10]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    11. [11]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    12. [12]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    13. [13]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    14. [14]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    15. [15]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    16. [16]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    17. [17]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    18. [18]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    19. [19]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    20. [20]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

Metrics
  • PDF Downloads(1062)
  • Abstract views(2099)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return