Citation: BASLAK Canan, BIN L Haluk, COSKUN Ahmet, ATALAY Tevfik. Synthesis of a Novel Thiadiazine Derivative and Electrochemical Properties for Pb2+ Transfer across Water/1,2-Dichloroethane Interface[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1859-1862. doi: 10.3866/PKU.WHXB20110801 shu

Synthesis of a Novel Thiadiazine Derivative and Electrochemical Properties for Pb2+ Transfer across Water/1,2-Dichloroethane Interface

  • Received Date: 14 March 2011
    Available Online: 7 June 2011

    Fund Project: The project was supported by the Scientific Research Fund of Selcuk University, Turkey (BAP-07201027). (BAP-07201027)

  • The transfer of Pb2+ facilitated by interfacial complexation with 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin-2-amine (PPTA) at the polarized water/1,2-dicholoroethane (1,2-DCE) interface was investigated by cyclic voltammetry. We synthesized the thiadiazine derivative, PPTA, firstly. The transfer was performed at different metal concentrations and scan rates, and the obtained voltammetric transfer peaks toward Pb2+ ion over other divalent cations (Zn2+, Co2+, Ni2+, Cd2+, Hg2+, and Cu2+) were reversible. The dependence of the half-wave potentials of the Pb2+ ion on the concentration of PPTA in the organic phase indicates that the ion transfer is facilitated by the formation of 1:2 (metal:ligand) complex in the organic phase with the association constant (lgβ2) of (17.1±0.2).

  • 加载中
    1. [1]

      (1) Ferreira, E. S.; Garau, A.; Lippolis, V.; Pereira, C. M.; Silva, F. J. Electroanal. Chem. 2006, 587, 155.  

    2. [2]

      (2) Katano, H.; Kuboyama, H.; Senda, M. J. Electroanal. Chem. 2000, 483, 117.  

    3. [3]

      (3) Bin l, H.; Akgemci, E. G.; Ersoz, M.; Atalay, T. Electroanalysis 2007, 19, 1327.  

    4. [4]

      (4) Shaaban, M. R.; Fuchigami, T. Tetrahedron Lett. 2002, 43, 273.  

    5. [5]

      (5) Zhang, M.; Sun, P.; Chen, Y.; Li, F.; Gao, Z.; Shao, Y. Chin. Sci. Bull. 2003, 48, 1234.

    6. [6]

      (6) Tomaszewski, L.; Reymond, F.; Brevet, P. F.; Girault, H. H. J. Electroanal. Chem. 2000, 483, 135.  

    7. [7]

      (7) Kasumov, V. T.; K?ksal, F. Spectrochim. Acta Part A 2005, 61, 225.  

    8. [8]

      (8) Hatay, I.; Su, B.; Li, F.; Partovi-Nia, R.; Vrubel, H.; Hu, X.; Ersoz, M.; Girault, H. H. Angew. Chem. Int. Edit. 2009, 48, 5139.  

    9. [9]

      (9) Alemu, H. Pure Appl. Chem. 2004, 76, 697.  

    10. [10]

      (10) Herzog, G.; McMahon, B.; Lefoix, M.; Mullins, N. D.; Collins, C. J.; Moynihan, H. A.; Arrigan, D.W. M. J. Electroanal. Chem. 2008, 622, 109.  

    11. [11]

      (11) bry, V.; Ulmeanu, S.; Reymond, F.; Bouchard, G.; Carrupt, P. A.; Testa, B.; Girault, H. H. J. Am. Chem. Soc. 1998, 123, 10684.

    12. [12]

      (12) Koryta, J. Electrochim. Acta 1979, 24, 293.  

    13. [13]

      (13) Shao, Y.; Stewart, A. A.; Girault, H. H. J. Chem. Soc. Faraday Trans. 1991, 87, 2593.  

    14. [14]

      (14) Lagger, G.; Tomaszewski, L.; Osborne, M. D.; Seddon, B. J.; Girault, H. H. J. Electroanal. Chem. 1998, 451, 29.  

    15. [15]

      (15) Prasad, A. R.; Ramalingam, T.; Rao, A.B.; Diwan, P. V.; Sattur, P. B. Eur. J. Med. Chem. 1989, 24, 199.  

    16. [16]

      (16) Fotouhi, L.; Mosavi, M.; Heravia, M. M.; Nematollahi, D. Tetrahedron Lett. 2006, 47, 8553.  

    17. [17]

      (17) Rodr?guez-Fernandez, E.; Manzano, J. L.; Benito, J. J.; Hermosa, R.; Monte, E.; Criado, J. J. J. Inorg. Biochem. 2005, 99, 1558.  

    18. [18]

      (18) El-Daway, M. A.; Omar, A. M. M. E.; Ismail, A. M.; Hazzaa, A. A. B. J. Pharm. Sci. 1983, 72, 45.  

    19. [19]

      (19) Witvrouw, M.; Arranz, M. E.; Pannecouque, C.; Declercq, R.; Jonckheere, H.; Schmit, J. C.; Vandamme, A. M.; Diaz, J. A.; Ingate, S. T.; Desmyter, J.; Esnouf, R.; Van Meervelt, L.; Vega, S.; Balzarini, J.; Clercq, D. Antimicrob. Agents Chemother. 1998, 42, 618.

    20. [20]

      (20) Mahajan, R. K.; Sood, P.; Mahajan, M. P.; Singh, P. Anal. Sci. 2004, 20, 1423.  

    21. [21]

      (21) Adamo, M. A.; Adlington, R. M.; Baldwin J. E.; Day, A. L. Tetrahedron 2004, 60, 841.  

    22. [22]

      (22) Akgemci, E. G.; Bin l, H.; Ersoz, M.; Stibor, I. Electroanalysis 2008, 20, 1354.  

    23. [23]

      (23) Marecek, V.; Samec, Z. J. Electroanal. Chem. 1985, 185, 263.  

    24. [24]

      (24) Koryta, J. Electrochim. Acta 1984, 29, 445.  

    25. [25]

      (25) Yuan, Y.; Gao, Z.; Guo, J.; Shao, Y. J. Electroanal. Chem. 2002, 526, 85.  

    26. [26]

      (26) Katano, H.; Senda, M. Anal. Sci. 1996, 12, 683.  

    27. [27]

      (27) Tetko, V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V. J. Comput. Aid. Mol. Des. 2005, 19, 453.  

    28. [28]

      (28) Steyaert, G.; Lisa, G.; Gaillard, P.; Boss, G.; Reymond, F.; Girault, H. H.; Carrupt, P. A.; Testa, B. J. Chem. Soc. Faraday Trans. 1997, 93, 401.  

    29. [29]

      (29) Shao, Y.; Osborne, M. D.; Girault, H. H. J. Electroanal. Chem. 1991, 318, 101.  

    30. [30]

      (30) Cheng, Y.; Schiffrin, D. J. J. Electroanal. Chem. 1997, 429, 37.  


  • 加载中
    1. [1]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    2. [2]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    3. [3]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    4. [4]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    7. [7]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    8. [8]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    9. [9]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    10. [10]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    11. [11]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    14. [14]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    15. [15]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    16. [16]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    17. [17]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    18. [18]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    19. [19]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    20. [20]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

Metrics
  • PDF Downloads(1062)
  • Abstract views(2056)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return