Citation: LIU Run-Hua, ZHANG Sen, XIA Xin-Yuan, YUN Da-Qin, BIAN Zu-Qiang, ZHAO Yong-Liang. DSSCs Using a Nanoparticle/Nanorod Composite TiO2 Film as a Photoanode[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1701-1706. doi: 10.3866/PKU.WHXB20110734 shu

DSSCs Using a Nanoparticle/Nanorod Composite TiO2 Film as a Photoanode

  • Received Date: 28 February 2011
    Available Online: 3 June 2011

    Fund Project: 国家自然科学基金(90922004, 20971006, 20821091)资助项目 (90922004, 20971006, 20821091)

  • TiO2 anatase nanorods (ANR) were synthesized by a two-step hydrothermal method. The materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). To increase the light harvesting efficiency and electron transfer rate, N719 dye-sensitized solar cells (DSSCs) were constructed and compared by adjusting the doping ratio of the anatase nanoparticles (ANP) and ANR in the TiO2 nanocrystalline film that was used as a photoanode in the DSSCs. The best light-to-electricity conversion efficiency (7.3%) was obtained for a double-layered photoanode (ANP/(ANR+ANP)) cell, which is 20% higher than the traditional single-layered ANP cell (6.1%) when tested under the same conditions and at AM 1.5, 100 mW·cm-2.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Grätzel, M. Nature 2001, 414, 338.  

    3. [3]

      (3) Yamaguchi, T.; Tobe, N.; Matsumoto, D.; Arakawa, H. Chem. Commun. 2007, 4767.

    4. [4]

      (4) Green, M. A.; Emery, K.; King, D. L.; Hishikawa, Y.;Warta,W. Photovolt: Res. Appl. 2006, 14, 455.  

    5. [5]

      (5) Ferber, J.; Luther, J. Solar Energy Materials and Solar Cells 1998, 54, 265.  

    6. [6]

      (6) Barbe, C.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    7. [7]

      (7) Koo, B.; Park, J.; Kim, Y.; Choi, S. H.; Sung, Y. E.; Hyeon, T. J. Phys. Chem. B 2006, 110, 24318.  

    8. [8]

      (8) Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.;Wang, F. J. Am. Chem. Soc. 2004, 126, 14943.  

    9. [9]

      (9) Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985.  

    10. [10]

      (10) Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung, Y. E. Adv. Mater. 2008, 20, 54.  

    11. [11]

      (11) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455.  

    12. [12]

      (12) Tan, B.;Wu, Y. Y. J. Phys. Chem. B. 2006, 110, 15932.  

    13. [13]

      (13) Yoon, J. H.; Jang, S. R.; Vittal, R.; Lee, J.; Kim, K. J. J. Photochem. Photobiol. A 2006, 180, 184.  

    14. [14]

      (14) Marco, L. D.; Manca, M.; Giannuzzi, R.; Malara, F.; Melcarne, G.; Ciccarella, G.; Zama, I.; Cin lani, R.; Gigli, G. J. Phys. Chem. C 2010, 114, 4228.

    15. [15]

      (15) Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coord. Chem. Rev. 2004, 248, 1381.  

    16. [16]

      (16) Xu, H.; Tao, X.;Wang, D. T.; Zheng, Y. Z.; Chen, J. F. Electrochimica Acta 2010, 55, 2280.  

    17. [17]

      (17) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    18. [18]

      (18) Yu, Y. X.; Xu, D. S. Appl. Catal. B: Environ. 2007, 73, 166.  

    19. [19]

      (19) Wang, Z. S.; Huang, C. H.; Huang, Y. Y.; Hou, Y. J.; Xie, P. H.; Zhang, B.W.; Cheng, H. M. Chem. Mater. 2001, 13, 678.  

    20. [20]

      (20) Yang,W. G.;Wan, F. R.;Wang, Y. L.; Jiang, C. H. Appl. Phys. Lett. 2009, 95, 133121.

    21. [21]

      (21) Wang, Z. S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H. Langmuir 2005, 21, 4272.  

    22. [22]

      (22) Bisquert, J. J. Phys. Chem. B 2002, 106, 325.  

    23. [23]

      (23) Hoshikawa, T.; Yamada, M.; Kikuchi, R.; Eguchi, K. J. Electrochim. Soc. 2005, 152, E68.

    24. [24]

      (24) ng, F. Impedance Analysis of Dye-Sensitized Solar Cells. Ph. D. Dissertation, Tianjin University, Tianjin, 2007. [巩峰. 染料敏化太阳能电池阻抗分析[D]. 天津: 天津大学, 2007.]

    25. [25]

      (25) Kuang, D. B.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem. Int. Edit. 2008, 47, 1923.  

    26. [26]

      (26) Cheng, Z. L.; Yang, X. R. Chin. J. Anal. Chem. 2000, 29, 6. [程志亮, 杨秀荣. 分析化学, 2000, 29, 6.]


  • 加载中
    1. [1]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    4. [4]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(1616)
  • Abstract views(2769)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return