Citation: LIU Run-Hua, ZHANG Sen, XIA Xin-Yuan, YUN Da-Qin, BIAN Zu-Qiang, ZHAO Yong-Liang. DSSCs Using a Nanoparticle/Nanorod Composite TiO2 Film as a Photoanode[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1701-1706. doi: 10.3866/PKU.WHXB20110734 shu

DSSCs Using a Nanoparticle/Nanorod Composite TiO2 Film as a Photoanode

  • Received Date: 28 February 2011
    Available Online: 3 June 2011

    Fund Project: 国家自然科学基金(90922004, 20971006, 20821091)资助项目 (90922004, 20971006, 20821091)

  • TiO2 anatase nanorods (ANR) were synthesized by a two-step hydrothermal method. The materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). To increase the light harvesting efficiency and electron transfer rate, N719 dye-sensitized solar cells (DSSCs) were constructed and compared by adjusting the doping ratio of the anatase nanoparticles (ANP) and ANR in the TiO2 nanocrystalline film that was used as a photoanode in the DSSCs. The best light-to-electricity conversion efficiency (7.3%) was obtained for a double-layered photoanode (ANP/(ANR+ANP)) cell, which is 20% higher than the traditional single-layered ANP cell (6.1%) when tested under the same conditions and at AM 1.5, 100 mW·cm-2.

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Grätzel, M. Nature 2001, 414, 338.  

    3. [3]

      (3) Yamaguchi, T.; Tobe, N.; Matsumoto, D.; Arakawa, H. Chem. Commun. 2007, 4767.

    4. [4]

      (4) Green, M. A.; Emery, K.; King, D. L.; Hishikawa, Y.;Warta,W. Photovolt: Res. Appl. 2006, 14, 455.  

    5. [5]

      (5) Ferber, J.; Luther, J. Solar Energy Materials and Solar Cells 1998, 54, 265.  

    6. [6]

      (6) Barbe, C.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    7. [7]

      (7) Koo, B.; Park, J.; Kim, Y.; Choi, S. H.; Sung, Y. E.; Hyeon, T. J. Phys. Chem. B 2006, 110, 24318.  

    8. [8]

      (8) Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.;Wang, F. J. Am. Chem. Soc. 2004, 126, 14943.  

    9. [9]

      (9) Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985.  

    10. [10]

      (10) Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung, Y. E. Adv. Mater. 2008, 20, 54.  

    11. [11]

      (11) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455.  

    12. [12]

      (12) Tan, B.;Wu, Y. Y. J. Phys. Chem. B. 2006, 110, 15932.  

    13. [13]

      (13) Yoon, J. H.; Jang, S. R.; Vittal, R.; Lee, J.; Kim, K. J. J. Photochem. Photobiol. A 2006, 180, 184.  

    14. [14]

      (14) Marco, L. D.; Manca, M.; Giannuzzi, R.; Malara, F.; Melcarne, G.; Ciccarella, G.; Zama, I.; Cin lani, R.; Gigli, G. J. Phys. Chem. C 2010, 114, 4228.

    15. [15]

      (15) Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coord. Chem. Rev. 2004, 248, 1381.  

    16. [16]

      (16) Xu, H.; Tao, X.;Wang, D. T.; Zheng, Y. Z.; Chen, J. F. Electrochimica Acta 2010, 55, 2280.  

    17. [17]

      (17) Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.

    18. [18]

      (18) Yu, Y. X.; Xu, D. S. Appl. Catal. B: Environ. 2007, 73, 166.  

    19. [19]

      (19) Wang, Z. S.; Huang, C. H.; Huang, Y. Y.; Hou, Y. J.; Xie, P. H.; Zhang, B.W.; Cheng, H. M. Chem. Mater. 2001, 13, 678.  

    20. [20]

      (20) Yang,W. G.;Wan, F. R.;Wang, Y. L.; Jiang, C. H. Appl. Phys. Lett. 2009, 95, 133121.

    21. [21]

      (21) Wang, Z. S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H. Langmuir 2005, 21, 4272.  

    22. [22]

      (22) Bisquert, J. J. Phys. Chem. B 2002, 106, 325.  

    23. [23]

      (23) Hoshikawa, T.; Yamada, M.; Kikuchi, R.; Eguchi, K. J. Electrochim. Soc. 2005, 152, E68.

    24. [24]

      (24) ng, F. Impedance Analysis of Dye-Sensitized Solar Cells. Ph. D. Dissertation, Tianjin University, Tianjin, 2007. [巩峰. 染料敏化太阳能电池阻抗分析[D]. 天津: 天津大学, 2007.]

    25. [25]

      (25) Kuang, D. B.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M. Angew. Chem. Int. Edit. 2008, 47, 1923.  

    26. [26]

      (26) Cheng, Z. L.; Yang, X. R. Chin. J. Anal. Chem. 2000, 29, 6. [程志亮, 杨秀荣. 分析化学, 2000, 29, 6.]


  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    6. [6]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    7. [7]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    15. [15]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(1616)
  • Abstract views(2689)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return