Citation: LIU Yu-Sheng, FU Hai-Ying, TANG Zhong-Feng, HUANG Wei, WU Guo-Zhong. Melting Point and Structure of Ionic Liquid [EMIM][PF6] on the Surface of Nano-SiOx Particles[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1725-1729. doi: 10.3866/PKU.WHXB20110731 shu

Melting Point and Structure of Ionic Liquid [EMIM][PF6] on the Surface of Nano-SiOx Particles

  • Received Date: 14 March 2011
    Available Online: 3 June 2011

    Fund Project: 国家自然科学基金(11079007, 20973192)资助项目 (11079007, 20973192)

  • The 1-ethyl-3-methyl imidazolium hexafluorophosphate ionic liquid ([EMIM][PF6]) was absorbed onto the surfaces of several kinds of nano-SiOx particles by mechanical grinding using an agate mortar. The samples were investigated by differential scanning calorimetry (DSC), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). We found that the melting point of the [EMIM][PF6] adsorbed on the surface of nano-SiOx was significantly less than that of the bulk ionic liquid. For the pure ionic liquid [EMIM][PF6], the melting point was 62 ℃. After absorption onto SiOx nanoparticles the melting point decreased to 52 ℃ and ΔT was -10 ℃. For the other two types of nano-SiOx particles the ΔT was -20 and -17 ℃, respectively. These results indicate that the melting point depression was dependent on the surface properties of the nano-SiOx particles. Furthermore, the characteristics of the surface-adsorbed ionic liquid were also found to be quite different from that of the bulk ionic liquid by Raman and XRD analyses. The difference in the density of the surface hydroxyl groups and the specific surface area of the nano-SiOx particles may induce different interfacial interactions between [EMIM][PF6] and the nano-SiOx particles. Our results suggest that the density of the surface hydroxyl groups and specific surface area are the major factors responsible for the behavior of the adsorbed ionic liquid [EMIM][PF6].

  • 加载中
    1. [1]

      (1) Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792.  

    2. [2]

      (2) Lee, S. G. Chem. Commun. 2006, No. 10, 1049.

    3. [3]

      (3) Bellayer, S.; Viau, L.; Tebby, Z.; Toupance, T.; Le Bideau, J.; Vioux, A. Dalton Trans. 2009, 8, 1307.

    4. [4]

      (4) rdon, C. M. Appl. Catal. A 2001, 222, 101.  

    5. [5]

      (5) Welton, T. Chem. Rev. 1999, 99, 2071.  

    6. [6]

      (6) Zhou, A. B.; Matsumoto, H.; Tatsumi, K. ChemPhysChem 2005, 6, 1324.  

    7. [7]

      (7) Kubo, K.; Shirai, M.; Yokoyama, C. Tetrahedron Lett. 2002, 43, 7115.  

    8. [8]

      (8) Valkenberg, M. H.; Decastro, C.; Holderich,W. F. Green Chem. 2002, 4, 88.  

    9. [9]

      (9) Shi, F.; Zhang, Q. H.; Deng, Y. Q. Chem. Eur. J. 2005, 11, 5279.  

    10. [10]

      (10) Néouze, M.; Litschauer, M. J. Phys. Chem. B 2008, 112, 16721.  

    11. [11]

      (11) Chen, S. M.;Wu, G. Z.; Sha, M. L.; Huang, S. R. J. Am. Chem. Soc. 2007, 129, 2416.  

    12. [12]

      (12) Nainaparampil, J. J.; Phillips, B. S.; Eapen, K. C.; Zabinski, J. S. Nanotechnol. 2005, 16, 2474.  

    13. [13]

      (13) Rittigstein, P.; Torkelson, J. M. J. Polym. Sci. Pt. B-Polym. Phys. 2006, 44, 2935.

    14. [14]

      (14) Shi, F.; Deng, Y. Q. Spectrochimica Acta A 2005, 62, 239.  

    15. [15]

      (15) Fukushima, T.; Aida, T. Chem. Eur. J. 2007, 13, 5048.  

    16. [16]

      (16) ebel, R.; Hesemann, P.;Weber, J.; Oller, E. M.; Friedrich, A.; Beuermann, S.; Taubert, A. Phys. Chem. Chem. Phys. 2009, 11, 3653.

    17. [17]

      (17) Neouze, M. A.; Bideau, J. L.; Gaveau, P. S.; Bellayer, S.; Vioux, A. Chem. Mater. 2006, 18, 3931.  

    18. [18]

      (18) Wang,Y.; Chen, M.; Zhou, F. Nature 2002, 391, 912.

    19. [19]

      (19) Lehmann, B.; Friedrich, K. J. Mater. Sci. Lett. 2003, 22, 1027.  

    20. [20]

      (20) Liu, Y. S.;Wu, G. Z.; Fu, H. Y.; Tang, Z. F.; Chen, S. M.; Sha, M. L. Dalton Trans. 2010, 39, 3190.  

    21. [21]

      (21) Guegan, R.; Morineau, D.; Alba-Simionesco, C. Chem. Phys. 2005, 317, 236.  

    22. [22]

      (22) Talaty, E. R.; Raja, S.; Storhaug, V. J.; Dolle, A.; Robert Carper, W. J. Phys. Chem. B 2004, 108, 13177.  

    23. [23]

      (23) Vishweshwar, P.; Nangia, A.; Lynch, V. M. Crystal Growth & Design 2003, 3, 783.  

    24. [24]

      (24) Huang,W.; Qian, H. J. Mol. Struct. 2007, 832, 108.  


  • 加载中
    1. [1]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    2. [2]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    8. [8]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    9. [9]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    10. [10]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    17. [17]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    18. [18]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    19. [19]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1111)
  • Abstract views(2824)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return