Citation: LIANG Wei-Hua, WANG Xiu-Li, DING Xue-Cheng, CHU Li-Zhi, DENG Ze-Chao, FU Guang-Sheng, WANG Ying-Long. Stability and Electronic Structures of Au-Doped Silicon Nanowires[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1615-1620. doi: 10.3866/PKU.WHXB20110729 shu

Stability and Electronic Structures of Au-Doped Silicon Nanowires

  • Received Date: 21 February 2011
    Available Online: 1 June 2011

    Fund Project: 国家自然科学基金(10774036) (10774036)河北省自然科学基金(E2008000631)资助项目 (E2008000631)

  • We calculated the formation energies, band structure, density of states, and magnetic properties of Au-doped hydrogen-passivated silicon nanowires (SiNWs) along the [100] direction at different positions by first-principles method based on density functional theory. We considered the substitutional positions, the interstitial positions with tetrahedral symmetry, and the interstitial positions with hexa nal symmetry. The results show that Au preferentially occupies the center substitutional position of the silicon nanowire. The doping of Au into silicon nanowires introduces an impurity level near the Fermi level. The bandgap values were less than those of pure silicon nanowires. For the substitutionally doping of silicon nanowires the density of states near the Fermi level were mainly contributed to by the Au d and p orbitals and the Si p orbital. Ferromagnetic behavior of the substitutionally doped nanowire was observed upon coupling the Au d and Si p states. For the interstitial doping of silicon nanowires nonmagnetic behavior was predicted. In addition, we also interpret the electronic and magnetic properties in terms of a simple analysis based on the atomic orbitals and electron filling.

  • 加载中
    1. [1]

      (1) Cui, Y.; Zhong, Z.;Wang, D.;Wang,W.; Lieber, P. Nano Lett. 2003, 3 (2), 149.

    2. [2]

      (2) Hu, S. F.;Wang,W. Z.; Liu, S. S.;Wu, Y. C.; Song, S. L.; Huang, T. Y. Solid State Commun. 2003, 125, 351.  

    3. [3]

      (3) Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, 241

    4. [4]

      (4) Tang, Y. H.; Sun, X. H.; Au, F. C. K.; Liao, L. S.; Peng, H. Y.; Lee, C. S.; Lee, S. T.; Sham, T. K. Appl. Phys. Lett. 2001, 79, 1673.  

    5. [5]

      (5) Zhou, G.W.; Li, H.; Sun, H. P.; Yu, D. P.;Wang, Y. Q.; Huang, X. J.; Chen, Q. L.; Zhang, Z. Appl. Phys. Lett. 1999, 75, 2447.

    6. [6]

      (6) Huang, C. T.; Hsin, C. L.; Huang, K.W.; Lee, C. Y.; Yeh, P. H.; Chen, L. J. Appl. Phys. Lett. 2007, 91, 093133.  

    7. [7]

      (7) Wu, H.W.; Tsai, C. J.; Chen, L. J. Appl. Phys. Lett. 2007, 90, 043121.  

    8. [8]

      (8) Landman, U.; Barnett, R. N.; Scherbakov, A. G.; Avouris, P. Phys. Rev. Lett. 2000, 85, 1958.

    9. [9]

      (9) Bai, Y. Z.; Zhao, G. F.; Shen, X. F.; Sun, J. M.;Wang, Y. X. Acta Phys. -Chim. Sin. 2011, 27, 39. [白燕枝, 赵高峰, 沈学锋, 孙建敏, 王渊旭. 物理化学学报, 2011, 27, 39.]

    10. [10]

      (10) Yu, L.; Zheng, G.; He, K. H.; Zeng, Z. L.; Chen, Q. L.;Wang, Q. B. Acta Phys. -Chim. Sin. 2010, 26, 763. [喻力, 郑广, 何开华, 曾中良, 陈琦丽, 王清波. 物理化学学报, 2010, 26, 763.]

    11. [11]

      (11) Long, R.; Dai, Y.; Huang, B. B. Comput. Mater. Sci. 2008, 42, 161.  

    12. [12]

      (12) Zhang, Z. Z.; Partoens, B.; Chang, K.; Peeters, F. M. Phys. Rev. B 2008, 77, 155201.  

    13. [13]

      (13) Küwen, F.; Leitsmann, R.; Bechstedt, F. Phys. Rev. B 2009, 80, 045203.  

    14. [14]

      (14) Liu, Q. H.; Yan,W. S.;Wei, H.; Sun, Z. H.; Pan, Z. Y.; Soldatov, A. V.; Mai, C.; Pei, C. J.; Zhang, X. F.; Jiang, Y.;Wei, S. Q. Phys. Rev. B 2008, 77, 245211.

    15. [15]

      (15) Leitsmann, R.; Panse, C.; Küwen, F.; Bechstedl, F. Phys. Rev. B 2009, 80, 104412.  

    16. [16]

      (16) Leitsmann, R.; Küwen , F.; Radl, C.; Panse, C.; Bechstedl, F. J. Chem. Theory Comput. 2010, 6 (2), 353.

    17. [17]

      (17) Ma, L.; Zhao, J. J.;Wang, J. G.;Wang, B. L.;Wang, G. G. Phys. Rev. B 2007, 75, 045312.

    18. [18]

      (18) Peelaers, H.; Partoens, B.; Peelaers, F. M. Nano Lett. 2006, 6, 2781.  

    19. [19]

      (19) Singh, A. K.; Kumar, V.; Kote, R.; Kawazoe,Y. Nano Lett. 2006, 6, 920.  

    20. [20]

      (20) Fernandez-Serra, M. V.; Adessi, C. H.; Blase, X. Phys. Rev. Lett. 2006, 96, 166805.  

    21. [21]

      (21) Giorgi, G.; Cartoixa, X.; Sgamellotti, A.; Rurali, R. Phys. Rev .B 2008, 78, 115327.  

    22. [22]

      (22) Durgun, E.; Akman, N.; Ataca, C.; Ciraci, S. Phys. Rev. B 2007, 76, 245323.  

    23. [23]

      (23) Durgu, E.; Akman, N.;Ciraci, S. Phys. Rev. B 2008, 78, 195116.  

    24. [24]

      (24) Xu, Q.; Li, J. B.; Li, S. S.; Xia, J. B. J. Appl. Phys. 2008, 104, 084307.  

    25. [25]

      (25) Liang,W. H.; Ding, X. C.; Chu, L. Z.; Deng, Z. C.; Guo, J. X.; Wu, Z. H.;Wang, Y. L. Acta Phys. Sin. 2010, 59, 8071. [梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 物理学报, 2010, 59, 8071.]

    26. [26]

      (26) Laboratory of Semiconductor Physics, Department of Physics, Xiamen University. Technological Fundamentals of Semiconductor Device; People's Education Press: Beijing, 1979; pp 91-95. [厦门大学物理系半导体物理研究室. 半导体器件工艺原理. 北京: 人民教育出版社, 1979: 91-95.]


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(1403)
  • Abstract views(2203)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return