Citation: SHEN Shan-Shan, LU Wen-Cong, ZHANG Liang-Miao, YUE Bao-Hua, HAN Ling, ZHANG Hao. Fabrication of Mesoporous NiAl2O4 Nanorods and Their Catalytic Properties for Toluene Hydrocracking[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1743-1750. doi: 10.3866/PKU.WHXB20110711 shu

Fabrication of Mesoporous NiAl2O4 Nanorods and Their Catalytic Properties for Toluene Hydrocracking

  • Received Date: 23 February 2011
    Available Online: 19 May 2011

    Fund Project: 国家自然科学基金(20973108) (20973108) 上海教委(11ZZ83) (11ZZ83) 上海市重点学科建设 (J50101) (J50101)上海大学创新基金(A.10-0101-09-023)资助项目 (A.10-0101-09-023)

  • Mesoporous single-crystalline NiAl2O4 nanorods were successfully synthesized by a one-step hydrothermal method using a pore-forming agent (NH4HCO3). A series of controlled experiments were also carried out to better understand the formation mechanism of NiAl2O4 nanorods. The experimental results indicate that the reaction time, reactant concentration and the amount of NH4HCO3 play an important role in determining the morphology. The morphology, structure and composition of the nanorods were investigated using transmission electron microscopy, high resolution transmission electron microscopy, scanning electron microscopy and X-ray diffraction. The specific surface area and pore-size distribution of the obtained product was determined by nitrogen adsorption-desorption measurements. NiAl2O4 nanorods have a high Brunauer-Emmett-Teller surface area and od porosity properties. The catalytic performance of the NiAl2O4 nanorods during toluene hydrocracking was investigated using a fixed bed reactor. After the toluene catalytic reactions over 400 min at a water stream/carbon molar ratio (H2O/C) of 1.0 with a reaction temperature of 700 ℃ the average conversion efficiency of toluene was about 86.5%. Compared to the NiAl2O4 nanoparticles prepared by alkaline precipitation, the mesoporous NiAl2O4 nanorods exhibited higher catalytic activity and stability during toluene hydrocracking. A possible formation mechanism for the mesoporous NiAl2O4 nanorods is proposed and discussed.

  • 加载中
    1. [1]

      (1) Buffoni, I. N.; Pompeo, F.; Santori, G. F.; Nichio, N. N. Catalysis Communications 2009, 10, 1656.  

    2. [2]

      (2) Wu, M. X.; Li,W.; Zhang, M. H.; Tao, K. Y. Acta Physico-Chimica Sinica 2007, 23, 1311. [武美霞, 李伟, 张明慧, 陶克毅. 物理化学学报, 2007, 23, 1311.]

    3. [3]

      (3) Seo, J. G.; Youn, M. H.; Song, I. K. Catalysis Surveys from Asia 2010, 14, 1.  

    4. [4]

      (4) Yolcular, S.; Olgun, O. Catalysis Today 2008, 138, 198.  

    5. [5]

      (5) Muroyama, H.; Nakase, R.; Matsui, T.; Eguchi, K. International Journal of Hydrogen Energy 2010, 35, 1575.

    6. [6]

      (6) Valentini, A.; Carre?o, N. L. V.; Probst, L. F. D.; Leite, E. R.; Lon , E. Microporous and Mesoporous Materials 2004, 68, 151.  

    7. [7]

      (7) Sivaiah, M. V.; Petit, S.; Beaufort, M. F.; Eyidi, D.; Barrault, J.; Batiot-Dupeyrat, C.; Valange, S. Microporous and Mesoporous Materials, 2011, 140, 69.  

    8. [8]

      (8) Popov, A. G.; Smirnov, A. V.; Knyazeva, E. E.; Yuschenko, V. V.; Kalistratova, E. A.; Klementiev, K. V.; Grünert,W.; Ivanova, I. I. Microporous and Mesoporous Materials 2010, 134, 124.  

    9. [9]

      (9) Yue, B.;Wang, X.; Ai, X.; Yang, J.; Li, L.; Lu, X.; Ding,W. Fuel Processing Technology 2010, 91, 1098.  

    10. [10]

      (10) Cheng, H.W.; Zhang, Y.W.; Lu, X. G.; Ding,W. Z.; Li, Q. Energy & Fuels 2009, 23, 414.  

    11. [11]

      (11) Song, X. C.; Zheng, Y. F.; Lin, S.;Wang, Y. Acta Physico-Chimica Sinica 2007, 23, 258. [宋旭春, 郑遗凡, 林深, 王芸. 物理化学学报, 2007, 23, 258.]

    12. [12]

      (12) Chen, A. M.; Xu, S. F.; Ni, Z. M. Acta Physico-Chimica Sinica 2009, 25, 2570. [陈爱民, 徐淑芬, 倪哲明. 物理化学学报, 2009, 25, 2570.]

    13. [13]

      (13) Chen, J. H.; Xue, C. S.; Zhuang, H. Z.; Li, H.; Qin, L. X.; Yang, Z. Z. Acta Physico-Chimica Sinica 2008, 24, 355. [陈金华, 薛成山, 庄惠照, 李红, 秦丽霞, 杨兆柱. 物理化学学报, 2008, 24, 355.]

    14. [14]

      (14) Vijaya, J. J.; Kennedy, L. J.; Sekaran, G.; Nagaraja, K. S. Materials Letters 2007, 61, 5213.  

    15. [15]

      (15) Amini, M. M.; Torkian, L. Materials Letters 2002, 57, 639.  

    16. [16]

      (16) Pettit, F. S.; Randklev, E. H.; Felten, E. J. Journal of the American Ceramic Society 1966, 49, 199.

    17. [17]

      (17) Platero, E. E.; Arean, C. O.; Parra, J. B. Research on Chemical Intermediates 1999, 25, 187.

    18. [18]

      (18) Zan uei, M.; Moghaddam, A. Z.; Razeghi, A.; Omidkhah, M. R. International Journal of Chemical Reactor Engineering 2010, 8, S1.

    19. [19]

      (19) Yung, M. M.; Magrini-Bair, K. A.; Parent, Y. O.; Carpenter, D. L.; Feik, C. J.; Gaston, K. R.; Pomeroy, M. D.; Phillips, S. D. Catalysis Letters 2010, 134, 242.  

    20. [20]

      (20) Gama, L.; Ribeiro, M. A.; Barros, B. S.; Kiminami, R. H. A.; Weber, I. T.; Costa, A. C. F. M. Journal of Alloys and Compounds 2009, 483, 453.  

    21. [21]

      (21) Nogueira, N. A. S.; da Silva, E. B.; Jardim, P. M.; Sasaki, J. M. Materials Letters 2007, 61, 4743.  

    22. [22]

      (22) Kanthimathi, M.; Dhathathreyan, A.; Nair, B. Materials Letters 2004, 58, 2914.  

    23. [23]

      (23) Velu, S.; Shah, N.; Jyothi, T. M.; Sivasanker, S. Microporous and Mesoporous Materials 1999, 33, 61.  

    24. [24]

      (24) Kim, H.W.; Kang, K. M.; Kwak, H. Y. International Journal of Hydrogen Energy 2009, 34, 3351.

    25. [25]

      (25) Romero, A.; Jobbagy, M.; Laborde, M.; Baronetti, G.; Amadeo, N. Catalysis Today 2010, 149, 407.  

    26. [26]

      (26) Voorhees, P. Journal of Statistical Physics 1985, 38, 231.  

    27. [27]

      (27) Zhao, Z.; Zhang, L.; Dai, H.; Du, Y.; Meng, X.; Zhang, R.; Liu, Y.; Deng, J. Microporous and Mesoporous Materials 2011, 138, 191.  

    28. [28]

      (28) Whitesides, G.; Mathias, J.; Seto, C. Science 1991, 254, 1312.  

    29. [29]

      (29) Zhang, L.; Lu,W.; Yan, L.; Feng, Y.; Bao, X.; Ni, J.; Shang, X.; Lv, Y. Microporous and Mesoporous Materials 2009, 119, 208.  

    30. [30]

      (30) Liu, J.; Harris, A. T. AICHE Journal 2010, 56, 102.

    31. [31]

      (31) Zhang, S. M.; Zeng, H. C. Chemistry of Materials 2009, 21, 871.  

    32. [32]

      (32) Mavis, B.; Akinc, M. Chemistry of Materials 2006, 18, 5317.  

    33. [33]

      (33) Osaki, T.; Horiuchi, T.; Sugiyama, T.; Suzuki, K.; Mori, T. Catalysis Letters 1998, 52, 171.  

    34. [34]

      (34) Saadi, A.; Merabiti, R.; Rassoul, Z.; Bettahar, M. M. Journal of Molecular Catalysis A-Chemical 2006, 253, 79.

    35. [35]

      (35) Zhao, J.; He, X.;Wang, L.; Tian, J.;Wan, C.; Jiang, C. International Journal of Hydrogen Energy 2007, 32, 380.  

    36. [36]

      (36) Oyama, S. T.; Lee, Y. K. Journal of Catalysis 2008, 258, 393.  

    37. [37]

      (37) Shigarov, A. B.; Kireenkov, V. V.; Kuzmin, V. A.; Kuzin, N. A.; Kirillov, V. A. Catalysis Today 2009, 144, 341.  


  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(1052)
  • Abstract views(2488)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return