Citation: ZHEN Cheng, TANG Xiao-Feng, ZHOU Xiao-Guo, LIU Shi-Lin. Application and Improvement in the Ion Velocity Imaging of Threshold Photoelectron-Photoion Coincidence Measurements[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1574-1578. doi: 10.3866/PKU.WHXB20110633 shu

Application and Improvement in the Ion Velocity Imaging of Threshold Photoelectron-Photoion Coincidence Measurements

  • Received Date: 30 March 2011
    Available Online: 10 May 2011

    Fund Project: 国家自然科学基金(10979042, 21073173) (10979042, 21073173)国家重点基础研究发展规划项目(973) (2007CB815204)资助 (973) (2007CB815204)

  • A series of electrodes were used to form a new accelerated electric field for ion focusing optics of a threshold photoelectron-photoion coincidence (TPEPICO) mass spectrometer. Ion groups with higher kinetic energy gradually expanded along the direction of flight while they were restricted along the direction perpendicular to the flight tube. Consequently, contractible velocity imaging was achieved on the surface of the detector for all the ions where a magnification factor (N) of less than 1 was obtained for the images. Therefore, od kinetic energy resolution and mass resolving power were obtained simultaneously. Using this novel focusing lens the dissociation of vibrational state-selected O2 ions in the B2Σg- state was reinvestigated and three-dimentional time-sliced velocity images of the O fragment were recorded. By comparing the kinetic energy released distributions of the O that dissociated from the two dissociation channels, satisfied velocity imaging was obtained for the ions with a wide kinetic energy range.

  • 加载中
    1. [1]

      (1) Chandler, D.W.; Houston, P. L. J. Chem. Phys. 1987, 87, 1445.  

    2. [2]

      (2) Heck, A. J. R.; Chandler, D.W. Annu. Rev. Phys. Chem. 1995, 46, 335.  

    3. [3]

      (3) Eppink, A.; Parker, D. H. Rev. Sci. Instrum. 1997, 68, 3477.  

    4. [4]

      (4) Gebhardt, C. R.; Rakitzis, T. P.; Samartzis, P. C.; Ladopoulos, V.; Kitsopoulos, T. N. Rev. Sci. Instrum. 2001, 72, 3848.  

    5. [5]

      (5) Townsend, D.; Minitti, M. P.; Suits, A. G. Rev. Sci. Instrum. 2003, 74, 2530.  

    6. [6]

      (6) Ashfold, M. N. R.; Nahler, N. H.; Orr-Ewing, A. J.; Vieuxmaire, O. P. J.; Toomes, R. L.; Kitsopoulos, T. N.; Garcia, I. A.; Chestakov, D. A.;Wu, S. M.; Parker, D. H. Phys. Chem. Chem. Phys. 2006, 8, 26.  

    7. [7]

      (7) Chichinin, A. I.; Gericke, K. H.; Kauczok, S.; Maul, C. Int. Rev. Phys. Chem. 2009, 28, 607.

    8. [8]

      (8) Liu, Y. Z.; Zheng, Q. S.; Zhang, Y.; Zhang, R. R.;Wang, Y. M.; Zhang, B. ChemPhysChem 2009, 10, 830.  

    9. [9]

      (9) Xu, H. F.; Guo, Y.; Liu, S. L.; Ma, X. X.; Dai, D. X.; Sha, G. H. J. Chem. Phys. 2002, 117, 5722.  

    10. [10]

      (10) Zhang, Y.W.; Yang, C. H.;Wu, S. M.; van Roij, A.; van der Zande,W. J.; Parker, D. H.; Yang, X. M. Rev. Sci. Instrum. 2011, 82, 13301

    11. [11]

      (11) Garcia, G. A.; Nahon, L.; Harding, C. J.; Mikajlo, E. A.; Powis, I. Rev. Sci. Instrum. 2005, 76, 53302.  

    12. [12]

      (12) Lin, J. J.; Zhou, J. G.; Shiu,W. C.; Liu, K. P. Rev. Sci. Instrum. 2003, 74, 2495.  

    13. [13]

      (13) Garcia, G. A.; Soldi-Lose, H.; Nahon, L. Rev. Sci. Instrum. 2009, 80, 23102.  

    14. [14]

      (14) Tang, X. F.; Zhou, X. G.; Niu, M. L.; Liu, S. L.; Sun, J. D.; Shan, X. B.; Liu, F. Y.; Sheng, L. S. Rev. Sci. Instrum. 2009, 80, 113101.  

    15. [15]

      (15) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L. Acta Phys. Sin. 2010, 59, 6940. [唐小锋, 牛铭理, 周晓国, 刘世林. 物理学报, 2010, 59, 6940.]

    16. [16]

      (16) Tang, X. F.; Niu, M. L.; Zhou, X. G.; Liu, S. L.; Liu, F. Y.; Shan, X. B.; Sheng, L. S. J. Chem. Phys. 2011, 134, 54312.  

    17. [17]

      (17) Wang, S. S.; Kong, R. H.; Shan, X. B.; Zhang, Y.W.; Sheng, L. S.;Wang, Z. Y.; Hao, L. Q.; Zhou, S. K. J. Synchrotron Radiat. 2006, 13, 415.  

    18. [18]

      (18) Richardviard, M.; Dutuit, O.; Lavollee, M.; vers, T.; Guyon, P. M.; Durup, J. J. Chem. Phys. 1985, 82, 4054.  

    19. [19]

      (19) Tang, X. F.; Zhou, X. G.; Niu, M. L.; Liu, S. L.; Liu, F. Y.; Shan, X. B.; Sheng, L. S. J. Phys. Chem. A dx.doi.org/10.1021/ jp111590s.

    20. [20]

      (20) Wang, H.; Zhou, X. G.; Liu, S. L.; Jiang, B.; Dai, D. X.; Yang, X. M. J. Chem. Phys. 2010, 132, 244309.  

    21. [21]

      (21) Xu, H. F.; Guo, Y.; Li, Q. F.; Shi, Y.; Liu, S. L.; Ma, X. X. J. Chem. Phys. 2004, 121, 3069.  

    22. [22]

      (22) Wang, F. Y.; Chen, Z. C.; Zhang, Y.W.; Shuai, Q.; Jiang, B.; Dai, D. X.;Wang, X. Y.; Yang, X. M. Chin. J. Chem. Phys. 2009, 22, 191.  


  • 加载中
    1. [1]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    12. [12]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(1025)
  • Abstract views(2251)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return