Citation: WEN Zhen-Li, CAO Xiao-Ning, ZHOU Chun-Lan, ZHAO Lei, LI Hai-Ling, WANG Wen-Jing. Influence of Deposition Temperature on the SiNx:H Film Prepared by Plasma Enhanced Chemical Vapor Deposition[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1531-1536. doi: 10.3866/PKU.WHXB20110632 shu

Influence of Deposition Temperature on the SiNx:H Film Prepared by Plasma Enhanced Chemical Vapor Deposition

  • Received Date: 18 January 2011
    Available Online: 10 May 2011

    Fund Project: 国家高技术研究发展计划(2007AA052437) (2007AA052437)中国科学院知识创新工程重要方向项目(KGCX2-YW-382)资助 (KGCX2-YW-382)

  • Hydrogenated silicon nitride films were prepared on the p-type polished silicon substrates by the direct plasma enhanced chemical vapor deposition (PECVD). The influences of deposition temperature on the composition, optical characteristics, structural characteristics, and passivation characteristics of the SiNx:H film were studied. All the solar cell devices were fabricated using industrial state-of-art crystal silicon solar cell technology. The influence of deposition temperature on the as-fabricated cell's electrical performance is demonstrated. The refractive index of the film ranges from 1.926 to 2.231 and it increases with an increase in the deposition temperature. This shows that the Si/N mole ratio also increases with deposition temperature. The Si-H bond and the N-H bond break and form a new Si-N bond when the deposition temperature is higher. This increase in the Si-N concentration results in an increase in film density. The effective minor carrier lifetime of the coated wafer increases initially with the substrate temperature. At a temperature of 450 °C the effective minor carrier lifetime begins to decrease. This phenomenon can be explained by H extraction from the film. For all the samples, the effective minor carrier lifetime degrades with time. The SiNx:H film prepared at a deposition temperature of 450 °C shows the best anti-reflection and surface passivation properties. The electrical performance of the fully functional solar cells is also demonstrated and the optimized results are highlighted and discussed.

  • 加载中
    1. [1]

      (1) Jana, T.; Mukhopadhyay, S.; Ray, S. Sol. Energy Mater. Sol. Cells 2002, 71 (2), 197.

    2. [2]

      (2) Nijs, J. Advanced Silicon and Semiconducting Silicon-alloy Based Materials and Devices; Taylor & Francis: Bristol, 1994.

    3. [3]

      (3) Duerinckx, F.; Szlufcik, J. Sol. Energy Mater. Sol. Cells 2002, 72 (1-4), 231.

    4. [4]

      (4) Schmidt, J.; Kerr, M. Sol. Energy Mater. Sol. Cells 2001, 65 (1-4), 585.

    5. [5]

      (5) Soppe,W.; Rieffe, H.;Weeber, A. Progress in Photovoltaics-Research and Applications 2005, 13 (7), 551.

    6. [6]

      (6) Santana, G.; Morales-Acevedo, A. Sol. Energy Mater. Sol. Cells 2000, 60 (2), 135.

    7. [7]

      (7) Lauinger, T.; Moschner, J.; Aberle, A.; Hezel, R. J. Vac. Sci. Technol. A- Vacuum, Surfaces, and Films 1998, 16, 530.

    8. [8]

      (8) Yoo, J.; Dhungel, S.; Yi, J. Thin Solid Films 2007, 515 (12), 5000.

    9. [9]

      (9) Dauwe, S. Low-temperature Surface Passivation of Crystalline Silicon and Its Application to the Rear Side of Solar Cells. Ph. D. Dissertation, Hannover University, Germany, 2004.

    10. [10]

      (10) Bustarret, E.; Bensouda, M.; Habrard, M.; Bruyere, J.; Poulin, S.; Gujrathi, S. Phys. Rev. B 1988, 38 (12), 8171.

    11. [11]

      (11) Lelievre, J.; Fourmond, E.; Kaminski, A.; Palais, O.; Ballutaud, D.; Lemiti, M. Sol. Energy Mater. Sol. Cells 2009, 93 (8), 1281.

    12. [12]

      (12) Tsu, D.; Lucovsky, G.; Mantini, M. Phys. Rev. B 1986, 33 (10), 7069.

    13. [13]

      (13) Morimoto, A.; Tsujimura, Y.; Kumeda, M.; Shimizu, T. Jpn. J. Appl. Phys 1985, 24 (11), 1394.

    14. [14]

      (14) Lanford,W.; Rand, M. J. Appl. Phys 1978, 49, 2473.

    15. [15]

      (15) Giorgis, F.; Giuliani, F.; Pirri, C.; Tresso, E.; Summonte, C.; Rizzoli, R.; Galloni, R.; Desalvo, A.; Rava, P. Philosophical Magazine Part B 1998, 77 (4), 925.

    16. [16]

      (16) Hong, J.; Kessels,W.; Soppe,W.; Rieffe, H.;Weeber, A.; van de Sanden, M. Structural Film Characteristics Related to the Passivation Properties of High-rate (> 0.5 nm/s) Plasma Deposited a-SiNx: H. In 3rdWorld Conf. on Photovoltaic Energy Conversion; Osaka, 2003; Wcpec-3 Organizing Committee: TYokyo, Japan, 2003; 1185.

    17. [17]

      (17) Soppe,W.; Hong, J.; Kessels,W.; van de Sanden, M.; Arnoldbik,W.; Schlemm, H.; Devilée1, C.; Rieffe1, H.; Schiermeier1, S.; Bultman, J.;Weeber1, A. On Combining Surface and Bulk Passivation of SiNx: H Layers for mc-Si Solar Cells. In Proc. 29th IEEE Photovoltuic Specialists Conference, New Orleans, 2002; IEEE: New York, USA, 2002; 158-161.

    18. [18]

      (18) Cuevas, A.; Chen, F.; Tan, J.; Mackel, H.;Winderbaum, S.; Roth, K. FTIR Analysis of Microwave-Excited PECVD Silicon Nitride Layers. In 4thWorld Conference on Photovoltaic Energy Conversion,Waikoloa, Hawaii, 2006; IEEE: New York, USA, 2006; 1148-1151.

    19. [19]

      (19) Weeber, A.; Rieffe, H.; Romijn, I.; Sinke,W.; Soppe,W. The Fundamental Properties of SiNx:H That Determine Its Passivating Qualities. In 31st IEEE PVSC Conf, Florida, 2005; IEEE: New York, USA, 2005; 1043-1046.

    20. [20]

      (20) Robertson, J.;Warren,W.; Kanicki, J. J. Non-Cryst. Solids 1995, 187, 297.

    21. [21]

      (21) Hezel, R.; Jaeger, K. J. Electrochem. Soc 1989, 136 (2), 518.


  • 加载中
    1. [1]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    2. [2]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    16. [16]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    17. [17]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

Metrics
  • PDF Downloads(1803)
  • Abstract views(2705)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return