Citation: LI Jing-Hong, ZHOU Dan-Hong, REN Jue. Theoretical Study of Ethylene Dimerization on the Ga/HZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1393-1399. doi: 10.3866/PKU.WHXB20110631 shu

Theoretical Study of Ethylene Dimerization on the Ga/HZSM-5 Zeolite

  • Received Date: 14 January 2011
    Available Online: 10 May 2011

    Fund Project: 国家自然科学基金(20073058)资助项目 (20073058)

  • We studied the reaction mechanisms of ethylene dimerization to 1-butene on Ga/HZSM-5 and Al/HZSM-5 zeolite catalysts by theoretical calculations and investigated the influence of zeolite acidity on the reaction energetics. The calculations were performed using the hybrid ONIOM2 (B3LYP/6-31G(d, p):UFF) method based on the two-layered 76T cluster model. Ethylene dimerization may proceed along two different pathways: either a stepwise or a concerted mechanism, and both produce a surface butoxide intermediate. Our results indicated that with respect to the reactions on Al/HZSM-5, the adsorption energy of ethylene on Ga/HZSM-5 was 20.62 kJ·mol-1 lower, and the activation energy for the protonation process was only 1.26 kJ·mol-1 higher. Additionally, the activation energy for a combination of ethoxide intermediate with ethylene was 62.55 kJ·mol-1 higher because of the larger atomic radius of Ga, which led to an unstable six-member ring transition state. For the concerted mechanism, protonation and C―C bond formation proceeded in one step and the activation energy on Ga/HZSM-5 was 16.44 kJ·mol-1 higher than that on Al/HZSM-5. Therefore, the ethylene dimerization reaction proceeded according to the concerted mechanism. The surface butoxide intermediate was transformed to 1-butene by deprotonation and adsorbed on the recovered Brönsted acid sites. The corresponding activation energy on Ga/HZSM-5 was similar to that on Al/HZSM-5 but it was obviously higher than that in the other steps. Therefore, it was the rate-determining step for this reaction.

  • 加载中
    1. [1]

      (1) Stocker, M. Microporous Mesoprous Mat. 1999, 29, 3.

    2. [2]

      (2) Rozanska, X.; Saintigny, X.; van Santen, R. A.; Clemendot, S.; Hutschka. F. J. Catal. 2002, 208, 89.

    3. [3]

      (3) Lukyanov, D. B.; Shtral, V. I.; Khadzhiev, S. N. J. Catal. 1994, 146, 87.

    4. [4]

      (4) Artit, A.; Tawan, S. Appl. Catal. A-Gen. 2009, 361, 93.

    5. [5]

      (5) Tielens, F.; Langenaeker,W.; Geerlings, P. J. Mol. Stuct. -Theochem 2000, 496, 153.

    6. [6]

      (6) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. AChem. 2002, 178, 267.

    7. [7]

      (7) Schroder, K. P.; Sauer, J. J. Phys. Chem. 1993, 97, 6579.

    8. [8]

      (8) Yang, G.;Wang, Y. J. Chem. Phys. 2003, 19, 18.

    9. [9]

      (9) Deka, R. C.; Hirao, K. J. Mol. Catal. A- Chem. 2002, 181, 275.

    10. [10]

      (10) Done, M.;Wang, J.; Sun, Y. Microporous Mesoprous Mat. 2001, 43, 237.

    11. [11]

      (11) Wang, Y.; Zhou, D. H.; Yang, G.; Miao, S. J.; Liu, X. C.; Bao, X. H. J. Phys. Chem. A 2004, 108, 6730.

    12. [12]

      (12) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. A. Chem. 2001, 1.

    13. [13]

      (13) Choudhary, V. R.; Devadas, P.; Banerjee, S.; Kinage, A. K. Microporous Mesopoous Mat. 2001, 47, 253.

    14. [14]

      (14) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Jiao, H. J. J. Phys.Chem. A 2002, 106, 8167.

    15. [15]

      (15) Fricke, R.; Kooslick, H.; Lischke, G.; Richter, M. Chem. Rev. 2000, 100, 2303.

    16. [16]

      (16) Chu, C. T.W.; Chang, C. D. J. Phys. Chem. 1985, 89, 1569.

    17. [17]

      (17) Sauer, J. Chem. Rev. 1989, 89, 199.

    18. [18]

      (18) Mikhailov, M. N.; Mishin, I. V.; Kustov, L. M.; Lapidus, A. L. Microporous Mesoprous Mater. 2007, 104, 145.

    19. [19]

      (19) Zygmunt, S. A.; Muller, R. M.; Curtiss, L. A.; Iton, L. E. J. Mol. Strut. 1998, 430, 9.

    20. [20]

      (20) Meitzner, G. D.; Iglesa, E.; Baumgarnter, J. E.; Huang, E. S. J. Catal. 1993, 140, 209.

    21. [21]

      (21) Pereira, M. S.; Nascimento, M. A. C. Chem. Phys Lett. 2005, 406, 446.

    22. [22]

      (22) Frash, M. V.; van Santen, R. A. J. Catal. 1997, 170, 1.

    23. [23]

      (23) Derouane, E. G.; Fripiat, J. G. J. Phys. Chem. 1987, 91, 145.

    24. [24]

      (24) Fripiat, J. G.; Berger-André, F.; André, J. M.; Derouane, E. G. Zeolites 1983, 3 (4), 306.

    25. [25]

      (25) Chatterjee, A.; Vetrivel, R. Microporous Mesoprous Mat. 1994, 3 (3), 211.

    26. [26]

      (26) Fisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    27. [27]

      (27) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29 (8), 715.

    28. [28]

      [张佳, 周丹红, 倪丹. 催化学报, 2008, 29 (8), 715.]


  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    15. [15]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    18. [18]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(909)
  • Abstract views(3065)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return