Citation:
	            
		            LI  Jing-Hong, ZHOU  Dan-Hong, REN  Jue. Theoretical Study of Ethylene Dimerization on the Ga/HZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica,
							;2011, 27(06): 1393-1399.
						
							doi:
								10.3866/PKU.WHXB20110631
						
					
				
					
				
	        
- 
	                	
We studied the reaction mechanisms of ethylene dimerization to 1-butene on Ga/HZSM-5 and Al/HZSM-5 zeolite catalysts by theoretical calculations and investigated the influence of zeolite acidity on the reaction energetics. The calculations were performed using the hybrid ONIOM2 (B3LYP/6-31G(d, p):UFF) method based on the two-layered 76T cluster model. Ethylene dimerization may proceed along two different pathways: either a stepwise or a concerted mechanism, and both produce a surface butoxide intermediate. Our results indicated that with respect to the reactions on Al/HZSM-5, the adsorption energy of ethylene on Ga/HZSM-5 was 20.62 kJ·mol-1 lower, and the activation energy for the protonation process was only 1.26 kJ·mol-1 higher. Additionally, the activation energy for a combination of ethoxide intermediate with ethylene was 62.55 kJ·mol-1 higher because of the larger atomic radius of Ga, which led to an unstable six-member ring transition state. For the concerted mechanism, protonation and C―C bond formation proceeded in one step and the activation energy on Ga/HZSM-5 was 16.44 kJ·mol-1 higher than that on Al/HZSM-5. Therefore, the ethylene dimerization reaction proceeded according to the concerted mechanism. The surface butoxide intermediate was transformed to 1-butene by deprotonation and adsorbed on the recovered Brönsted acid sites. The corresponding activation energy on Ga/HZSM-5 was similar to that on Al/HZSM-5 but it was obviously higher than that in the other steps. Therefore, it was the rate-determining step for this reaction.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Stocker, M. Microporous Mesoprous Mat. 1999, 29, 3.
 - 
			
                    [2]
                
			
(2) Rozanska, X.; Saintigny, X.; van Santen, R. A.; Clemendot, S.; Hutschka. F. J. Catal. 2002, 208, 89.
 - 
			
                    [3]
                
			
(3) Lukyanov, D. B.; Shtral, V. I.; Khadzhiev, S. N. J. Catal. 1994, 146, 87.
 - 
			
                    [4]
                
			
(4) Artit, A.; Tawan, S. Appl. Catal. A-Gen. 2009, 361, 93.
 - 
			
                    [5]
                
			
(5) Tielens, F.; Langenaeker,W.; Geerlings, P. J. Mol. Stuct. -Theochem 2000, 496, 153.
 - 
			
                    [6]
                
			
(6) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. AChem. 2002, 178, 267.
 - 
			
                    [7]
                
			
(7) Schroder, K. P.; Sauer, J. J. Phys. Chem. 1993, 97, 6579.
 - 
			
                    [8]
                
			
(8) Yang, G.;Wang, Y. J. Chem. Phys. 2003, 19, 18.
 - 
			
                    [9]
                
			
(9) Deka, R. C.; Hirao, K. J. Mol. Catal. A- Chem. 2002, 181, 275.
 - 
			
                    [10]
                
			
(10) Done, M.;Wang, J.; Sun, Y. Microporous Mesoprous Mat. 2001, 43, 237.
 - 
			
                    [11]
                
			
(11) Wang, Y.; Zhou, D. H.; Yang, G.; Miao, S. J.; Liu, X. C.; Bao, X. H. J. Phys. Chem. A 2004, 108, 6730.
 - 
			
                    [12]
                
			
(12) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. A. Chem. 2001, 1.
 - 
			
                    [13]
                
			
(13) Choudhary, V. R.; Devadas, P.; Banerjee, S.; Kinage, A. K. Microporous Mesopoous Mat. 2001, 47, 253.
 - 
			
                    [14]
                
			
(14) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Jiao, H. J. J. Phys.Chem. A 2002, 106, 8167.
 - 
			
                    [15]
                
			
(15) Fricke, R.; Kooslick, H.; Lischke, G.; Richter, M. Chem. Rev. 2000, 100, 2303.
 - 
			
                    [16]
                
			
(16) Chu, C. T.W.; Chang, C. D. J. Phys. Chem. 1985, 89, 1569.
 - 
			
                    [17]
                
			
(17) Sauer, J. Chem. Rev. 1989, 89, 199.
 - 
			
                    [18]
                
			
(18) Mikhailov, M. N.; Mishin, I. V.; Kustov, L. M.; Lapidus, A. L. Microporous Mesoprous Mater. 2007, 104, 145.
 - 
			
                    [19]
                
			
(19) Zygmunt, S. A.; Muller, R. M.; Curtiss, L. A.; Iton, L. E. J. Mol. Strut. 1998, 430, 9.
 - 
			
                    [20]
                
			
(20) Meitzner, G. D.; Iglesa, E.; Baumgarnter, J. E.; Huang, E. S. J. Catal. 1993, 140, 209.
 - 
			
                    [21]
                
			
(21) Pereira, M. S.; Nascimento, M. A. C. Chem. Phys Lett. 2005, 406, 446.
 - 
			
                    [22]
                
			
(22) Frash, M. V.; van Santen, R. A. J. Catal. 1997, 170, 1.
 - 
			
                    [23]
                
			
(23) Derouane, E. G.; Fripiat, J. G. J. Phys. Chem. 1987, 91, 145.
 - 
			
                    [24]
                
			
(24) Fripiat, J. G.; Berger-André, F.; André, J. M.; Derouane, E. G. Zeolites 1983, 3 (4), 306.
 - 
			
                    [25]
                
			
(25) Chatterjee, A.; Vetrivel, R. Microporous Mesoprous Mat. 1994, 3 (3), 211.
 - 
			
                    [26]
                
			
(26) Fisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.
 - 
			
                    [27]
                
			
(27) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29 (8), 715.
 - 
			
                    [28]
                
			
[张佳, 周丹红, 倪丹. 催化学报, 2008, 29 (8), 715.]
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
 - 
				[2]
				
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
 - 
				[3]
				
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
 - 
				[4]
				
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
 - 
				[5]
				
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
 - 
				[6]
				
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
 - 
				[7]
				
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
 - 
				[8]
				
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
 - 
				[9]
				
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
 - 
				[10]
				
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
 - 
				[11]
				
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
 - 
				[12]
				
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
 - 
				[13]
				
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
 - 
				[14]
				
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
 - 
				[15]
				
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
 - 
				[16]
				
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
 - 
				[17]
				
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
 - 
				[18]
				
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
 - 
				[19]
				
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
 - 
				[20]
				
Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(909)
 - Abstract views(3195)
 - HTML views(21)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: