Citation:
LI Jing-Hong, ZHOU Dan-Hong, REN Jue. Theoretical Study of Ethylene Dimerization on the Ga/HZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica,
;2011, 27(06): 1393-1399.
doi:
10.3866/PKU.WHXB20110631
-
We studied the reaction mechanisms of ethylene dimerization to 1-butene on Ga/HZSM-5 and Al/HZSM-5 zeolite catalysts by theoretical calculations and investigated the influence of zeolite acidity on the reaction energetics. The calculations were performed using the hybrid ONIOM2 (B3LYP/6-31G(d, p):UFF) method based on the two-layered 76T cluster model. Ethylene dimerization may proceed along two different pathways: either a stepwise or a concerted mechanism, and both produce a surface butoxide intermediate. Our results indicated that with respect to the reactions on Al/HZSM-5, the adsorption energy of ethylene on Ga/HZSM-5 was 20.62 kJ·mol-1 lower, and the activation energy for the protonation process was only 1.26 kJ·mol-1 higher. Additionally, the activation energy for a combination of ethoxide intermediate with ethylene was 62.55 kJ·mol-1 higher because of the larger atomic radius of Ga, which led to an unstable six-member ring transition state. For the concerted mechanism, protonation and C―C bond formation proceeded in one step and the activation energy on Ga/HZSM-5 was 16.44 kJ·mol-1 higher than that on Al/HZSM-5. Therefore, the ethylene dimerization reaction proceeded according to the concerted mechanism. The surface butoxide intermediate was transformed to 1-butene by deprotonation and adsorbed on the recovered Brönsted acid sites. The corresponding activation energy on Ga/HZSM-5 was similar to that on Al/HZSM-5 but it was obviously higher than that in the other steps. Therefore, it was the rate-determining step for this reaction.
-
-
-
[1]
(1) Stocker, M. Microporous Mesoprous Mat. 1999, 29, 3.
-
[2]
(2) Rozanska, X.; Saintigny, X.; van Santen, R. A.; Clemendot, S.; Hutschka. F. J. Catal. 2002, 208, 89.
-
[3]
(3) Lukyanov, D. B.; Shtral, V. I.; Khadzhiev, S. N. J. Catal. 1994, 146, 87.
-
[4]
(4) Artit, A.; Tawan, S. Appl. Catal. A-Gen. 2009, 361, 93.
-
[5]
(5) Tielens, F.; Langenaeker,W.; Geerlings, P. J. Mol. Stuct. -Theochem 2000, 496, 153.
-
[6]
(6) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. AChem. 2002, 178, 267.
-
[7]
(7) Schroder, K. P.; Sauer, J. J. Phys. Chem. 1993, 97, 6579.
-
[8]
(8) Yang, G.;Wang, Y. J. Chem. Phys. 2003, 19, 18.
-
[9]
(9) Deka, R. C.; Hirao, K. J. Mol. Catal. A- Chem. 2002, 181, 275.
-
[10]
(10) Done, M.;Wang, J.; Sun, Y. Microporous Mesoprous Mat. 2001, 43, 237.
-
[11]
(11) Wang, Y.; Zhou, D. H.; Yang, G.; Miao, S. J.; Liu, X. C.; Bao, X. H. J. Phys. Chem. A 2004, 108, 6730.
-
[12]
(12) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. A. Chem. 2001, 1.
-
[13]
(13) Choudhary, V. R.; Devadas, P.; Banerjee, S.; Kinage, A. K. Microporous Mesopoous Mat. 2001, 47, 253.
-
[14]
(14) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Jiao, H. J. J. Phys.Chem. A 2002, 106, 8167.
-
[15]
(15) Fricke, R.; Kooslick, H.; Lischke, G.; Richter, M. Chem. Rev. 2000, 100, 2303.
-
[16]
(16) Chu, C. T.W.; Chang, C. D. J. Phys. Chem. 1985, 89, 1569.
-
[17]
(17) Sauer, J. Chem. Rev. 1989, 89, 199.
-
[18]
(18) Mikhailov, M. N.; Mishin, I. V.; Kustov, L. M.; Lapidus, A. L. Microporous Mesoprous Mater. 2007, 104, 145.
-
[19]
(19) Zygmunt, S. A.; Muller, R. M.; Curtiss, L. A.; Iton, L. E. J. Mol. Strut. 1998, 430, 9.
-
[20]
(20) Meitzner, G. D.; Iglesa, E.; Baumgarnter, J. E.; Huang, E. S. J. Catal. 1993, 140, 209.
-
[21]
(21) Pereira, M. S.; Nascimento, M. A. C. Chem. Phys Lett. 2005, 406, 446.
-
[22]
(22) Frash, M. V.; van Santen, R. A. J. Catal. 1997, 170, 1.
-
[23]
(23) Derouane, E. G.; Fripiat, J. G. J. Phys. Chem. 1987, 91, 145.
-
[24]
(24) Fripiat, J. G.; Berger-André, F.; André, J. M.; Derouane, E. G. Zeolites 1983, 3 (4), 306.
-
[25]
(25) Chatterjee, A.; Vetrivel, R. Microporous Mesoprous Mat. 1994, 3 (3), 211.
-
[26]
(26) Fisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.
-
[27]
(27) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29 (8), 715.
-
[28]
[张佳, 周丹红, 倪丹. 催化学报, 2008, 29 (8), 715.]
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[5]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[6]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[7]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[8]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[9]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[10]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[11]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[12]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[13]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[14]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[15]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[16]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[17]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[18]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[19]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[20]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[1]
Metrics
- PDF Downloads(909)
- Abstract views(3064)
- HTML views(14)