Citation: LI Jing-Hong, ZHOU Dan-Hong, REN Jue. Theoretical Study of Ethylene Dimerization on the Ga/HZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1393-1399. doi: 10.3866/PKU.WHXB20110631
-
We studied the reaction mechanisms of ethylene dimerization to 1-butene on Ga/HZSM-5 and Al/HZSM-5 zeolite catalysts by theoretical calculations and investigated the influence of zeolite acidity on the reaction energetics. The calculations were performed using the hybrid ONIOM2 (B3LYP/6-31G(d, p):UFF) method based on the two-layered 76T cluster model. Ethylene dimerization may proceed along two different pathways: either a stepwise or a concerted mechanism, and both produce a surface butoxide intermediate. Our results indicated that with respect to the reactions on Al/HZSM-5, the adsorption energy of ethylene on Ga/HZSM-5 was 20.62 kJ·mol-1 lower, and the activation energy for the protonation process was only 1.26 kJ·mol-1 higher. Additionally, the activation energy for a combination of ethoxide intermediate with ethylene was 62.55 kJ·mol-1 higher because of the larger atomic radius of Ga, which led to an unstable six-member ring transition state. For the concerted mechanism, protonation and C―C bond formation proceeded in one step and the activation energy on Ga/HZSM-5 was 16.44 kJ·mol-1 higher than that on Al/HZSM-5. Therefore, the ethylene dimerization reaction proceeded according to the concerted mechanism. The surface butoxide intermediate was transformed to 1-butene by deprotonation and adsorbed on the recovered Brönsted acid sites. The corresponding activation energy on Ga/HZSM-5 was similar to that on Al/HZSM-5 but it was obviously higher than that in the other steps. Therefore, it was the rate-determining step for this reaction.
-
-
[1]
(1) Stocker, M. Microporous Mesoprous Mat. 1999, 29, 3.
-
[2]
(2) Rozanska, X.; Saintigny, X.; van Santen, R. A.; Clemendot, S.; Hutschka. F. J. Catal. 2002, 208, 89.
-
[3]
(3) Lukyanov, D. B.; Shtral, V. I.; Khadzhiev, S. N. J. Catal. 1994, 146, 87.
-
[4]
(4) Artit, A.; Tawan, S. Appl. Catal. A-Gen. 2009, 361, 93.
-
[5]
(5) Tielens, F.; Langenaeker,W.; Geerlings, P. J. Mol. Stuct. -Theochem 2000, 496, 153.
-
[6]
(6) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. AChem. 2002, 178, 267.
-
[7]
(7) Schroder, K. P.; Sauer, J. J. Phys. Chem. 1993, 97, 6579.
-
[8]
(8) Yang, G.;Wang, Y. J. Chem. Phys. 2003, 19, 18.
-
[9]
(9) Deka, R. C.; Hirao, K. J. Mol. Catal. A- Chem. 2002, 181, 275.
-
[10]
(10) Done, M.;Wang, J.; Sun, Y. Microporous Mesoprous Mat. 2001, 43, 237.
-
[11]
(11) Wang, Y.; Zhou, D. H.; Yang, G.; Miao, S. J.; Liu, X. C.; Bao, X. H. J. Phys. Chem. A 2004, 108, 6730.
-
[12]
(12) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. J. Mol. Catal. A. Chem. 2001, 1.
-
[13]
(13) Choudhary, V. R.; Devadas, P.; Banerjee, S.; Kinage, A. K. Microporous Mesopoous Mat. 2001, 47, 253.
-
[14]
(14) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Jiao, H. J. J. Phys.Chem. A 2002, 106, 8167.
-
[15]
(15) Fricke, R.; Kooslick, H.; Lischke, G.; Richter, M. Chem. Rev. 2000, 100, 2303.
-
[16]
(16) Chu, C. T.W.; Chang, C. D. J. Phys. Chem. 1985, 89, 1569.
-
[17]
(17) Sauer, J. Chem. Rev. 1989, 89, 199.
-
[18]
(18) Mikhailov, M. N.; Mishin, I. V.; Kustov, L. M.; Lapidus, A. L. Microporous Mesoprous Mater. 2007, 104, 145.
-
[19]
(19) Zygmunt, S. A.; Muller, R. M.; Curtiss, L. A.; Iton, L. E. J. Mol. Strut. 1998, 430, 9.
-
[20]
(20) Meitzner, G. D.; Iglesa, E.; Baumgarnter, J. E.; Huang, E. S. J. Catal. 1993, 140, 209.
-
[21]
(21) Pereira, M. S.; Nascimento, M. A. C. Chem. Phys Lett. 2005, 406, 446.
-
[22]
(22) Frash, M. V.; van Santen, R. A. J. Catal. 1997, 170, 1.
-
[23]
(23) Derouane, E. G.; Fripiat, J. G. J. Phys. Chem. 1987, 91, 145.
-
[24]
(24) Fripiat, J. G.; Berger-André, F.; André, J. M.; Derouane, E. G. Zeolites 1983, 3 (4), 306.
-
[25]
(25) Chatterjee, A.; Vetrivel, R. Microporous Mesoprous Mat. 1994, 3 (3), 211.
-
[26]
(26) Fisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.
-
[27]
(27) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29 (8), 715.
-
[28]
[张佳, 周丹红, 倪丹. 催化学报, 2008, 29 (8), 715.]
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[6]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[7]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[8]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[11]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[12]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[13]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[16]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[17]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[18]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[19]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[20]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[1]
Metrics
- PDF Downloads(909)
- Abstract views(3014)
- HTML views(11)