Citation: YING Hong, WANG Zhi-Yong, GUO Zheng-Duo, SHI Zu-Jin, YANG Shang-Feng. Reduced Graphene Oxide-Modified Bi2WO6 as an Improved Photocatalyst under Visible Light[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1482-1486. doi: 10.3866/PKU.WHXB20110630 shu

Reduced Graphene Oxide-Modified Bi2WO6 as an Improved Photocatalyst under Visible Light

  • Received Date: 18 January 2011
    Available Online: 9 May 2011

    Fund Project: 国家自然科学基金(20771010, 20801052) (20771010, 20801052) 国家重点基础研究发展规划项目(973) (2011CB932601)国家高技术研究发展计划项目(863)(2007AA03Z311) (973) (2011CB932601)国家高技术研究发展计划项目(863)(2007AA03Z311)中国科学院百人计划(A1010)资助 (A1010)

  • A new and improved photocatalyst, reduced graphene oxide (R )-modified Bi2WO6 (Bi2WO6-R ), was synthesized by a two-step hydrothermal process. The effect of R content on photoactivity was investigated and the optimum mass ratio of R to Bi2WO6 was determined to be 1%. Based on scanning electron microscopic study, R does not change the structure and morphology of the Bi2WO6 photocatalyst. Therefore, the improvement in the photoactivity of the Bi2WO6-R composite is undoubtedly ascribed to R . The presence of graphene can facilitate the dissociation of photogenerated excitons, which leads to more O2·- to degrade dye pollutants like rhodamine-B (RhB). Moreover, the efficient adsorption of RhB molecules on graphene is another reason for the improved photoactivity.

  • 加载中
    1. [1]

      (1) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemannt, D. W. Chem. Rev. 1995, 95, 69.

    2. [2]

      (2) Raffainer, I. I.; von Rudolf, R. P. Ind. Eng. Chem. Res. 2001, 40, 1083.

    3. [3]

      (3) Agrios, A. G.; Pichat, P. J. Appl. Electrochem. 2005, 35, 655.

    4. [4]

      (4) Kudo, A.; Hijii, S. Chem. Lett. 1999, 28, 1103.

    5. [5]

      (5) Tang, J.W.; Zou, Z. G.; Ye, J. H. Catal. Lett. 2004, 92, 53.

    6. [6]

      (6) Zhang, C.; Zhu, Y. F. Chem. Mater. 2005, 17, 3537.

    7. [7]

      (7) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459.

    8. [8]

      (8) Tang, J.W.; Zou, Z. G.; Ye, J. H. Chem. Mater. 2004, 16, 1644.

    9. [9]

      (9) Zhang, L. S.;Wang,W. Z.; Zhou, L.; Xu, H. L. Small 2007, 3, 1618.

    10. [10]

      (10) Lin, X. P.; Huang, T.; Huang, F. Q.;Wang,W. D.; Shi, J. L. J. Mater. Chem. 2007, 17, 2145.

    11. [11]

      (11) Zhu, S. B.; Xu, T. G.; Fu, H. B.; Zhao, J. C.; Zhu, Y. F. Environ. Sci. Technol. 2007, 41, 6234.

    12. [12]

      (12) Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yu, J. G. Dalton Trans. 2010, 39, 3420.

    13. [13]

      (13) Kamat, P. V. J. Phys. Chem. Lett. 2010, 1, 520.

    14. [14]

      (14) McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud?homme, R. K.; Aksay, I. A. Chem. Mater. 2007, 19, 4396.

    15. [15]

      (15) Nair, R. R.; Blake, P.; Gri renko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.

    16. [16]

      (16) Hontoria-Lucas, C.; Lopez-Peinado, A. J.; Lopez- nzaiez, J. D.; Rojas-Cerantes, M. L.; Martin-Aranda, R. M. Carbon 1995, 33, 1585.

    17. [17]

      (17) Zhang, H.; Lv, X. J.; Li, Y. M.;Wang, Y.; Li, J. H. ACS Nano 2009, 4, 380.

    18. [18]

      (18) Xiong, Z. G.; Zhang, L. L.; Ma, J. Z.; Zhao, X. S. Chem. Commun. 2010, 46, 6099.

    19. [19]

      (19) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. J. Phys. Chem. Lett. 2010, 1, 2607.

    20. [20]

      (20) Gao, E. P.;Wang,W. Z.; Shang, M.; Xu, J. H. Phys. Chem. Chem. Phys. 2011, 13, 2887.

    21. [21]

      (21) Li, Y. Y.; Liu, J. P.; Huang, X. T. Nanoscale Res. Lett. 2008, 3, 365.

    22. [22]

      (22) Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2, 1487.

    23. [23]

      (23) Zhang, L.;Wang,W. Z.; Shang, M.; Sun, S. M.; Xu, J. H. J. Hazard. Mater. 2009, 172, 1193.


  • 加载中
    1. [1]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    6. [6]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(1715)
  • Abstract views(3398)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return