Citation: ZHANG Li-Zhi, YANG Hao-Lin, ZHAO Dai-Qing, JIANG Li-Qiao. Influence of Methanol Addition on the Two Stage Combustion of a Dimethyl Ether/Air Mixture[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1560-1566. doi: 10.3866/PKU.WHXB20110629
-
A numerical study was performed to determine the effects of methanol addition on the two stage oxidation of a dimethyl ether/air mixture and on the production of formaldehyde and formic acid in a micro-flow reactor with a fixed temperature profile. The results indicate that methanol addition influences the reaction pathway for dimethyl ether oxidation at low velocity and this results in the low temperature reactions of dimethyl ether being suppressed. The low temperature reactions of dimethyl ether nearly vanish when methanol is added in the same mass fraction as dimethyl ether. The major cause of this is a decrease in the OH radical concentration. With increasing the amount of methanol the emission index of formic acid decreases sharply but the emission index of formaldehyde increases slightly at first, and then it decreases gradually. Therefore, appropriate methanol addition can result in the reduction of the emission indexes of formic acid and formaldehyde.
-
-
[1]
(1) Ofner, H.; Gill, D.W. Dimethyl Ether as Fuel for CI Engines: A New Technology and Its Environmental Potential. In Alternative Fuels For Compression Ignition Engines, International Congress & Exposition, Detroit, MI, USA, February, 1998; SAE paper, 981158.
-
[2]
(2) Fleisch, T.; McCarthy, C.; Basu, A. A New Clean Diesel Technology: Demonstration of ULEV Emissions on a Navistar Diesel Engine Fueled with Dimethyl Ether. In International Congress & Exposition, Detroit, MI, USA, February, 1995; SAE paper, 950061.
-
[3]
(3) Egnell, R. Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel. In Alternative Fuels for CI Engines, SAE 2001World Congress, Detroit, MI, USA, March, 2001; SAE paper, 2001-01-0651.
-
[4]
(4) Yamada, H.; Suzaki, H. S.; Sakanashi, H.; Choi, N.; Tezaki, A. Combust. Flame 2005, 140, 24.
- [5]
-
[6]
(6) Yamada, H.; Yoshii, M.; Tezaki, A. Proc. Combust. Inst. 2005, 30, 2773.
-
[7]
(7) Yamada, H.; Suzaki, K.; Tezaki, A.; to, Y. Combust. Flame 2008, 154, 248.
-
[8]
(8) Chen, Z.; Yao, M. F.; Zheng, Z. Q.; Zhang, B. Transactions of CSICE 2006, 24 (2), 116. [陈征, 尧命发, 郑尊清, 张波. 内燃机学报, 2006, 24 (2), 116. ]
-
[9]
(9) Huang, J. C.; Zhang, Q. C.; Li, X. J.; Yu, H. D.; Yu, K. X. Journal of Guangxi University 2007, 32, 362. [黄锦成, 张全长, 李献菁, 余红东, 余克橡. 广西大学学报, 2007, 32, 362. ]
-
[10]
(10) Liang, X.; Yao, M. F.; Zheng, Z. Q. Journal of Combustion Science and Technology 2005, 11, 149. [梁霞, 尧命发, 郑尊清. 燃烧科学与技术, 2005, 11, 149. ]
-
[11]
(11) Chao, H. R.; Lin, T. C.; Chao, M. R. J. Hazard. Mater. 2000, 13, 39.
-
[12]
(12) Poulopoulos, S. G.; Samaras, D. P.; Philippopouos, C. J. Atmos. Environ. 2001, 35, 4399.
-
[13]
(13) Zhang, Y. S.; Lang, J.; Mo, C. L.; Sun, H. Y.;Wu, H.W. Transactions of CSICE 2008, 26, 36. [张煜盛, 郎静, 莫春兰, 孙海英, 吴宏伟. 内燃机学报, 2008, 26, 36. ]
-
[14]
(14) Zhao, D. Q.; Zeng, T.; Jiang. L. Q.; Wang, X. H.; Yang,W. B; Zeng, X. J. Chinese Journal of Environmental Engineering 2008, 2 (3), 395. [赵黛青, 曾涛, 蒋利桥, 汪小憨, 杨卫斌, 曾小军. 环境工程学报, 2008, 2 (3), 395. ]
-
[15]
(15) Lang, J.; Zhang, Y. S.; Zhou, X. S.;Wu, H.W. Journal of Chongqing University 2008, 7, 284.
-
[16]
(16) Schifter, I.; Diaz, L.; Rodriguez, R.; Salazar, L. Fuel 2011, 90, 779.
-
[17]
(17) Oshibe, H.; Nakamura, H.; Tezuka, T.; Hasegawa, S.; Maruta, K. Combust. Flame 2010, 157, 1572.
-
[18]
(18) Patanker, S. V.; Spalding, D. B. Int. J. Heat Mass Transf. 1972, 15, 1787.
-
[19]
(19) Curran, H. J.; Pitz,W. J.;Westbrook, C. K. Int. J. Chem. Kinet. 1998, 30, 229.
-
[20]
(20) Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet. 2000, 32, 714.
-
[21]
(21) Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet. 2000, 32, 741.
-
[22]
(22) Held, T. J.; Dryer, F. L. Int. J. Chem. Kinet. 1998, 30, 805.
-
[23]
(23) Curran, H. J.; Fischer, S. L.; Dryer, F. L.; Pitz,W. J.;Westbrook, C. K. Available from https://www-pls.llnl. v/?url=science_and_technology-chemistry-combustion-dme.
-
[1]
-
-
[1]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[2]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[3]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[4]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[5]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[6]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[7]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[8]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[9]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[10]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[11]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[12]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[13]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[14]
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
-
[15]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[16]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[17]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[18]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[19]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[20]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[1]
Metrics
- PDF Downloads(1114)
- Abstract views(2511)
- HTML views(5)