Citation: CHEN Cong, LI Wei-Zhong, SONG Yong-Chen, WENG Lin-Dong. Structure and Kinetics of Hydrogen Bonds in Aqueous Glucose Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1372-1378. doi: 10.3866/PKU.WHXB20110626 shu

Structure and Kinetics of Hydrogen Bonds in Aqueous Glucose Solutions

  • Received Date: 31 March 2011
    Available Online: 5 May 2011

    Fund Project: 国家自然科学基金重点项目(50736001) (50736001)教育部中央高校基本科研业务费专项资金(DUT11NY01)资助 (DUT11NY01)

  • Hydrogen bonding structure and kinetics in aqueous glucose solutions with different concentrations were studied using the molecular dynamics simulation method. The percentage distributions of glucose and water molecules with i hydrogen bonds (intra, inter, or both) were analyzed. We find that a critical number N exists and the percentage of glucose or water molecules with N hydrogen bonds is the highest. When i<N, the percentage of glucose or water molecules with i hydrogen bonds increases as the glucose concentration increases, while when i>N the percentage of glucose or water molecules with i hydrogen bonds decreases as the glucose concentration increases. Continuous and intermittent autocorrelation functions for the different hydrogen bonds (intra-hydrogen bonds in the glucose molecules, hydrogen bonds between glucose molecules, hydrogen bonds between the water molecules, hydrogen bonds between the glucose and water molecules, and all hydrogen bonds) and the hydrogen bond lifetimes were also calculated.

  • 加载中
    1. [1]

      (1) Pitt, R. E.; Steponkus, P. L. Cryobiology 1989, 26, 44.

    2. [2]

      (2) Karlsson, J. O. M.; Cravalho, E. G.; Toner, M. Journal of Applied Physics 1994, 75, 4442.

    3. [3]

      (3) Toner, M.; Cravalho, E. G. Journal of Applied Physics 1990, 67, 1582.

    4. [4]

      (4) Zhao, G.; Luo, D.; Gao, D. AIChE J. 2006, 52, 2596.

    5. [5]

      (5) Chudotvortsev, I. G.; Yatsenko, O. B. Russian Journal of Applied Chemistry 2007, 80, 201.

    6. [6]

      (6) Cooke, S. A.; Jonsdottir, S. O.;Westh, P. Journal of Chemical and Engineering Data 2002, 47, 1185.

    7. [7]

      (7) Deumier, F.; Bohuon, P. Journal of Food Engineering 2005, 68, 377.

    8. [8]

      (8) Fuchs, K.; Kaatze, U. Journal of Physical Chemistry B 2001, 105, 2036.

    9. [9]

      (9) Grgur, B. N.; Zugic, D. L.; Gvozdenovic, M. M.; Trisovic, T. L. Carbohydrate Research 2006, 341, 1779.

    10. [10]

      (10) Silva, A. M.; da Silva, E. C.; da Silva, C. O. Carbohydrate Research 2006, 341, 1029.

    11. [11]

      (11) Smith, L. J.; Price, D. L.; Chowdhuri, Z.; Brady, J.W.; Saboungi, M. L. Journal of Chemical Physics 2004, 120, 3527.

    12. [12]

      (12) Zuccarello, F.; Buemi, G. Carbohydrate Research 1995, 273, 129.

    13. [13]

      (13) Naidoo, K. J.; Gamieldien, M. R.; Chen, J. Y. J.;Widmalm, G.; Maliniak, A. Journal of Physical Chemistry B 2008, 112, 15151.

    14. [14]

      (14) Miyata, T. Condensed Matter Physics 2007, 10, 433.

    15. [15]

      (15) Lewis, B. E.; Schramm, V. L. Journal of the American Chemical Society 2001, 123, 1327.

    16. [16]

      (16) Hoffmann, M.; Rychlewski, J. Journal of the American Chemical Society 2001, 123, 2308.

    17. [17]

      (17) Elias, K.; Csonka, G.; Kolossvary, I.; Csizmadia, I. G. Magyar Kemiai Folyoirat 1998, 104, 475.

    18. [18]

      (18) da Silva, C. O.; Mennucci, B.; Vreven, T. Journal of Organic Chemistry 2004, 69, 8161.

    19. [19]

      (19) Bagno, A.; Rastrelli, F.; Saielli, G. Journal of Organic Chemistry 2007, 72, 7373.

    20. [20]

      (20) Mason, P. E.; Neilson, G.W.; Enderby, J. E.; Saboungi, M. L.; Cuello, G.; Brady, J.W. Journal of Chemical Physics 2006, 125, 224505.

    21. [21]

      (21) Schnupf, U.;Willett, J. L.; Momany, F. Carbohydrate Research 2010, 345, 503.

    22. [22]

      (22) Paolantoni, M.; Sassi, P.; Morresi, A.; Santini, S. Journal of Chemical Physics 2007, 127, 024504.

    23. [23]

      (23) Gallina, M. E.; Comez, L.; Perticaroli, S.; Morresi, A.; Cesaro, A.; De Giacomo, O.; Di Fonzo, S.; Gessini, A.; Masciovecchio, C.; Palmieri, L.; Paolantoni, M.; Sassi, P.; Scarponi, F.; Fioretto, D. Philosophical Magazine 2008, 88, 3991.

    24. [24]

      (24) Suzuki, T.; Sota, T. Journal of Chemical Physics 2003, 119, 10133.

    25. [25]

      (25) Suzuki, T. Physical Chemistry Chemical Physics 2008, 10, 96.

    26. [26]

      (26) Mason, P. E.; Neilson, G.W.; Enderby, J. E.; Saboungi, M. L.; Brady, J.W. Journal of Physical Chemistry B 2005, 109, 13104.

    27. [27]

      (27) Te, J. A.; Tan, M. L.; Ichiye, T. Chemical Physics Letters 2010, 491, 218.

    28. [28]

      (28) Lee, S. L.; Debenedetti, P. G.; Errington, J. R. Journal of Chemical Physics 2005, 122, 204511

    29. [29]

      (29) Phillips, J. C.; Braun, R.;Wang,W.; Gumbar, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Journal of Computational Chemistry 2005, 26, 1781.

    30. [30]

      (30) Guvench, O.; Greene, S. N.; Kamath, G.; Brady, J.W.; Venable, R. M.; Pastor, R.W.; Alexander, D.; MacKerell, J. Journal of Computational Chemistry 2008, 29, 2543.

    31. [31]

      (31) Ryckaert, J. P. Molecular Physics 1985, 55, 549.

    32. [32]

      (32) Darden, T.; York, D.; Pedersen, L. Journal of Chemical Physics 1993, 98, 10089.

    33. [33]

      (33) Procacci, P.; Marchi, M. Journal of Chemical Physics 1996, 104, 3003.

    34. [34]

      (34) Martyna, G. J.; Tobias, D. J.; Klein, M. L. Journal of Chemical Physics 1994, 101, 4177.

    35. [35]

      (35) Feller, S. E.; Zhang, Y.; Pastor, R.W.; Brooks, B. R. Journal of Chemical Physics 1995, 103, 4613.

    36. [36]

      (36) Brunger, A. T. X-PLOR, 3.1 ed.; The Howard Hugher Medical Institute and Department of Molecular Biophysics and Biochemistry: Yale University, 1992; pp A System for X.

    37. [37]

      (37) Chen, C.; Li,W. Z. Acta Phys. -Chim. Sin. 2009, 25, 507.

    38. [38]

      [陈聪, 李维仲. 物理化学学报, 2009, 25, 507.]

    39. [39]

      (38) Chen, C.; Li,W.; Song, Y.; Yang, J. Molecular Physics 2009, 107, 673.

    40. [40]

      (39) Elola, M. D.; Ladanyi, B. M. Journal of Chemical Physics 2006, 125, 184506.

    41. [41]

      (40) Lee, H. S.; Tuckerman, M. E. Journal of Chemical Physics 2007, 126, 164501.

    42. [42]

      (41) Guardia, E.; Marti, J.; Padro, J. A.; Saiz, L.; Komolkin, A. V. Journal of Molecular Liquids 2002, 96-97, 3.

    43. [43]

      (42) Root, L. J.; Berne, B. J. Journal of Chemical Physics 1997, 107, 4350.

    44. [44]

      (43) Skarmoutsos, l.; Guardia, E.; Samios, J. Journal of Chemical Physics 2010, 133, 014504.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    16. [16]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    17. [17]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

Metrics
  • PDF Downloads(1263)
  • Abstract views(2903)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return