Citation: CHEN Cong, LI Wei-Zhong, SONG Yong-Chen, WENG Lin-Dong. Structure and Kinetics of Hydrogen Bonds in Aqueous Glucose Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1372-1378. doi: 10.3866/PKU.WHXB20110626 shu

Structure and Kinetics of Hydrogen Bonds in Aqueous Glucose Solutions

  • Received Date: 31 March 2011
    Available Online: 5 May 2011

    Fund Project: 国家自然科学基金重点项目(50736001) (50736001)教育部中央高校基本科研业务费专项资金(DUT11NY01)资助 (DUT11NY01)

  • Hydrogen bonding structure and kinetics in aqueous glucose solutions with different concentrations were studied using the molecular dynamics simulation method. The percentage distributions of glucose and water molecules with i hydrogen bonds (intra, inter, or both) were analyzed. We find that a critical number N exists and the percentage of glucose or water molecules with N hydrogen bonds is the highest. When i<N, the percentage of glucose or water molecules with i hydrogen bonds increases as the glucose concentration increases, while when i>N the percentage of glucose or water molecules with i hydrogen bonds decreases as the glucose concentration increases. Continuous and intermittent autocorrelation functions for the different hydrogen bonds (intra-hydrogen bonds in the glucose molecules, hydrogen bonds between glucose molecules, hydrogen bonds between the water molecules, hydrogen bonds between the glucose and water molecules, and all hydrogen bonds) and the hydrogen bond lifetimes were also calculated.

  • 加载中
    1. [1]

      (1) Pitt, R. E.; Steponkus, P. L. Cryobiology 1989, 26, 44.

    2. [2]

      (2) Karlsson, J. O. M.; Cravalho, E. G.; Toner, M. Journal of Applied Physics 1994, 75, 4442.

    3. [3]

      (3) Toner, M.; Cravalho, E. G. Journal of Applied Physics 1990, 67, 1582.

    4. [4]

      (4) Zhao, G.; Luo, D.; Gao, D. AIChE J. 2006, 52, 2596.

    5. [5]

      (5) Chudotvortsev, I. G.; Yatsenko, O. B. Russian Journal of Applied Chemistry 2007, 80, 201.

    6. [6]

      (6) Cooke, S. A.; Jonsdottir, S. O.;Westh, P. Journal of Chemical and Engineering Data 2002, 47, 1185.

    7. [7]

      (7) Deumier, F.; Bohuon, P. Journal of Food Engineering 2005, 68, 377.

    8. [8]

      (8) Fuchs, K.; Kaatze, U. Journal of Physical Chemistry B 2001, 105, 2036.

    9. [9]

      (9) Grgur, B. N.; Zugic, D. L.; Gvozdenovic, M. M.; Trisovic, T. L. Carbohydrate Research 2006, 341, 1779.

    10. [10]

      (10) Silva, A. M.; da Silva, E. C.; da Silva, C. O. Carbohydrate Research 2006, 341, 1029.

    11. [11]

      (11) Smith, L. J.; Price, D. L.; Chowdhuri, Z.; Brady, J.W.; Saboungi, M. L. Journal of Chemical Physics 2004, 120, 3527.

    12. [12]

      (12) Zuccarello, F.; Buemi, G. Carbohydrate Research 1995, 273, 129.

    13. [13]

      (13) Naidoo, K. J.; Gamieldien, M. R.; Chen, J. Y. J.;Widmalm, G.; Maliniak, A. Journal of Physical Chemistry B 2008, 112, 15151.

    14. [14]

      (14) Miyata, T. Condensed Matter Physics 2007, 10, 433.

    15. [15]

      (15) Lewis, B. E.; Schramm, V. L. Journal of the American Chemical Society 2001, 123, 1327.

    16. [16]

      (16) Hoffmann, M.; Rychlewski, J. Journal of the American Chemical Society 2001, 123, 2308.

    17. [17]

      (17) Elias, K.; Csonka, G.; Kolossvary, I.; Csizmadia, I. G. Magyar Kemiai Folyoirat 1998, 104, 475.

    18. [18]

      (18) da Silva, C. O.; Mennucci, B.; Vreven, T. Journal of Organic Chemistry 2004, 69, 8161.

    19. [19]

      (19) Bagno, A.; Rastrelli, F.; Saielli, G. Journal of Organic Chemistry 2007, 72, 7373.

    20. [20]

      (20) Mason, P. E.; Neilson, G.W.; Enderby, J. E.; Saboungi, M. L.; Cuello, G.; Brady, J.W. Journal of Chemical Physics 2006, 125, 224505.

    21. [21]

      (21) Schnupf, U.;Willett, J. L.; Momany, F. Carbohydrate Research 2010, 345, 503.

    22. [22]

      (22) Paolantoni, M.; Sassi, P.; Morresi, A.; Santini, S. Journal of Chemical Physics 2007, 127, 024504.

    23. [23]

      (23) Gallina, M. E.; Comez, L.; Perticaroli, S.; Morresi, A.; Cesaro, A.; De Giacomo, O.; Di Fonzo, S.; Gessini, A.; Masciovecchio, C.; Palmieri, L.; Paolantoni, M.; Sassi, P.; Scarponi, F.; Fioretto, D. Philosophical Magazine 2008, 88, 3991.

    24. [24]

      (24) Suzuki, T.; Sota, T. Journal of Chemical Physics 2003, 119, 10133.

    25. [25]

      (25) Suzuki, T. Physical Chemistry Chemical Physics 2008, 10, 96.

    26. [26]

      (26) Mason, P. E.; Neilson, G.W.; Enderby, J. E.; Saboungi, M. L.; Brady, J.W. Journal of Physical Chemistry B 2005, 109, 13104.

    27. [27]

      (27) Te, J. A.; Tan, M. L.; Ichiye, T. Chemical Physics Letters 2010, 491, 218.

    28. [28]

      (28) Lee, S. L.; Debenedetti, P. G.; Errington, J. R. Journal of Chemical Physics 2005, 122, 204511

    29. [29]

      (29) Phillips, J. C.; Braun, R.;Wang,W.; Gumbar, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Journal of Computational Chemistry 2005, 26, 1781.

    30. [30]

      (30) Guvench, O.; Greene, S. N.; Kamath, G.; Brady, J.W.; Venable, R. M.; Pastor, R.W.; Alexander, D.; MacKerell, J. Journal of Computational Chemistry 2008, 29, 2543.

    31. [31]

      (31) Ryckaert, J. P. Molecular Physics 1985, 55, 549.

    32. [32]

      (32) Darden, T.; York, D.; Pedersen, L. Journal of Chemical Physics 1993, 98, 10089.

    33. [33]

      (33) Procacci, P.; Marchi, M. Journal of Chemical Physics 1996, 104, 3003.

    34. [34]

      (34) Martyna, G. J.; Tobias, D. J.; Klein, M. L. Journal of Chemical Physics 1994, 101, 4177.

    35. [35]

      (35) Feller, S. E.; Zhang, Y.; Pastor, R.W.; Brooks, B. R. Journal of Chemical Physics 1995, 103, 4613.

    36. [36]

      (36) Brunger, A. T. X-PLOR, 3.1 ed.; The Howard Hugher Medical Institute and Department of Molecular Biophysics and Biochemistry: Yale University, 1992; pp A System for X.

    37. [37]

      (37) Chen, C.; Li,W. Z. Acta Phys. -Chim. Sin. 2009, 25, 507.

    38. [38]

      [陈聪, 李维仲. 物理化学学报, 2009, 25, 507.]

    39. [39]

      (38) Chen, C.; Li,W.; Song, Y.; Yang, J. Molecular Physics 2009, 107, 673.

    40. [40]

      (39) Elola, M. D.; Ladanyi, B. M. Journal of Chemical Physics 2006, 125, 184506.

    41. [41]

      (40) Lee, H. S.; Tuckerman, M. E. Journal of Chemical Physics 2007, 126, 164501.

    42. [42]

      (41) Guardia, E.; Marti, J.; Padro, J. A.; Saiz, L.; Komolkin, A. V. Journal of Molecular Liquids 2002, 96-97, 3.

    43. [43]

      (42) Root, L. J.; Berne, B. J. Journal of Chemical Physics 1997, 107, 4350.

    44. [44]

      (43) Skarmoutsos, l.; Guardia, E.; Samios, J. Journal of Chemical Physics 2010, 133, 014504.


  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    7. [7]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(1263)
  • Abstract views(2958)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return