Citation: LI Ya-Min, SUN Ping. Quasi-Classical Trajectory Study on the Reaction Kinetics of Li+HF(ν=0, j=0)→LiF+H[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1357-1360. doi: 10.3866/PKU.WHXB20110625 shu

Quasi-Classical Trajectory Study on the Reaction Kinetics of Li+HF(ν=0, j=0)→LiF+H

  • Received Date: 21 January 2011
    Available Online: 5 May 2011

  • A theoretical study of the Li+HF (ν=0, j=0)→LiF+H reaction was carried out using the quasi- classical trajectory (QCT) method based on the latest APW potential energy surface (PES) obtained by Aguado et al. The reaction cross-section, rotational alignment, and angular distributions of the products were obtained at different collision energies. The results indicate that there are two reaction pathways, i.e., an abstraction pathway and an insertion pathway for this reaction. At a low collision energy the insertion mechanism is dominant whereas at high energy (E>200 meV) the abstraction mechanism is dominant.

  • 加载中
    1. [1]

      (1) Becker, C. H.; Casavecchia, P.; Tiedemann, P.W.; Nalentini, J. J.; Lee, Y. T. J. Chem. Phys. 1980, 73, 2833.

    2. [2]

      (2) Loesch, H. J.; Stenzel, S.;Wustenbecker, B. J. Chem. Phys. 1991, 95, 3841.

    3. [3]

      (3) Loesch, H. J.; Stienkemeier, F. J. Chem. Phys. 1993, 99, 9598.

    4. [4]

      (4) Loesch, H. J.; Stienkemeier, F. J. Chem. Phys. 1993, 98, 9570.

    5. [5]

      (5) Hobel, O.; Menendez, M.; Loesch, H. J. Phys. Chem. Chem. Phys. 2001, 3, 3627.

    6. [6]

      (6) Bobbenkamp, R.; Paladini, A.; Russo, A.; Loesch, H. J.; Menendez, M.; Verdasco, E.; Aoiz, F. J.;Werner, H. J. J. Chem. Phys. 2005, 122, 244304.

    7. [7]

      (7) Aoiz, F. J.; Martinez, M. T.; Verdasco, E.; Menendez, M.; Rabanos, V. S. Chem. Phys. Lett. 1999, 299, 25.

    8. [8]

      (8) Aoiz, F. J.; Νerdasco, E.; Saez Rabanos, V.; Loesch, H. J.; Menendez, M. Phys. Chem. Chem. Phys. 2000, 2, 541.

    9. [9]

      (9) Aguado, A.; Zanchet, A.; Roncero, O.; nzalez-Lezana, T.; Rodriguez-Lopez, A.; Sanz-Sanz, C.; mez-Carrasco, S. J. Phys. Chem. A. 2009, 113, 14488.

    10. [10]

      (10) Lara, M.; Aguado, A.; Paniagua, M.; Roncero, O. J. Chem. Phys. 2000, 113, 1781.

    11. [11]

      (11) Lara, M.; Aguado, A.; Paniagua, M.; Roncero, O. J. Chem. Phys. 1998, 109, 9391.

    12. [12]

      (12) gtas, F.; Balint-karti, G. G.; Offer, A. R. J. Chem. Phys. 1996, 104, 7927.

    13. [13]

      (13) Baer, M.; Last, L.; Loesch, H. J. J. Chem. Phys. 1994, 101, 9648.

    14. [14]

      (14) Hobel, O.; Paladini, A.; Russo, A.; Bobbenkamp, R.; Loesch, H. J. Phys. Chem. Chem. Phys. 2004, 6, 2198.

    15. [15]

      (15) Lagana, A.; Bolloni, A.; Grocchianti, S.; Parker, G. A. J. Phys. Chem. A 2000, 324, 466.

    16. [16]

      (16) Chen, M. D.; Han, K. L.; Lou, N. Q. J. Chem. Phys. 2003, 118 (10), 4463.

    17. [17]

      (17) Chu, T. S.; Han, K. L. J. Phys. Chem. A 2005, 109, 2050.

    18. [18]

      (18) Chu, T. S.; Zhang, Y.; Han, K. L. Int. Reν. Phys. Chem. 2006, 25, 201.

    19. [19]

      (19) Zhang, X.; Xie, T. X.; Zhao, M. Y.; Han, K. L. Chin. J. Chem. Phys. 2002, 15, 169.

    20. [20]

      (20) Cai, M. Q.; Zhang, L.; Tang, B. Y.; Han, K. L.; Chen, M. D.; Yang, G.W. Chem. Phys. 2000, 255, 283.

    21. [21]

      (21) Han, K. L.; He, G. Z.; Lou, N. Q. J. Chem. Phys. 1996, 105, 8699.

    22. [22]

      (22) Wang, M. L.; Han, K. L.; He, G. Z. J. Chem. Phys. 1997, 101, 1527.

    23. [23]

      (23) Li, R. J.; Han, K. L.; Li, F. E.; Lu, R. C.; He, G. Z.; Lou, N. Q. Chem. Phys. Lett. 1994, 220, 281.

    24. [24]

      (24) Jasper, A.W.; Truhlar, D. G.; Li, Q.W. J. Phys. Chem. A 2003, 107, 7236.

    25. [25]

      (25) Levine, R. D.; Bernstein, R. B.Molecular Reaction Dynamics; Oxford University Press: Oxford, 1974; pp 21-61.

    26. [26]

      (26) Zhong, H. Y.; Xia,W.W.; Gu, L. Z.; Yao, L. J. Theo. Comp. Chem. 2009, 8, 861.

    27. [27]

      (27) Yuan, M. H.; Zhao, G. J. Int. J. Quantum Chem. 2010, 110, 1842.

    28. [28]

      (28) Zhang, X.; Han, K. L. Int. J. Quantum. Chem. 2006, 106, 1815.

    29. [29]

      (29) Zhang, Z. H. Theoretical Studies for Several Typical Reactions by using the Quasiclassical Trajectory. Ph.D. Dissertation, Dalian Uniνersity of Technology, Dalian, 2007.

    30. [30]

      [张志红. 几个典型微观反应体系的准经典轨线计算

    31. [31]

      [D]. 大连: 大连理工大学, 2007.]

    32. [32]

      (30) Han, K. L.; He, G. Z.; Lou, N. Q. J. Chem. Phys. 1992, 96 (10), 7865.

    33. [33]

      (31) Kim, S. K.; Herschbach, D. R. Faraday Discuss. Chem. Soc. 1987, 84, 159.


  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    6. [6]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    7. [7]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    11. [11]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    16. [16]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    19. [19]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(1252)
  • Abstract views(2464)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return