Citation: CAO Guo-Fei, LIAO Yi, ZHANG Xiao-Hua, CHEN Jin-Hua. Preparation and Characterization of Peasecod-Based Activated Carbons as Electrode Materials for Electrochemical Double-Layer Capacitors[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1679-1684. doi: 10.3866/PKU.WHXB20110623 shu

Preparation and Characterization of Peasecod-Based Activated Carbons as Electrode Materials for Electrochemical Double-Layer Capacitors

  • Received Date: 22 November 2010
    Available Online: 5 May 2011

    Fund Project: 教育部长江学者与创新团队发展计划(PCSIRT),湖南省自然科学基金(04JJ1008) (PCSIRT),湖南省自然科学基金(04JJ1008)高等学校博士学科点专项科研基金(20040532006)资助项目 (20040532006)

  • Activated carbons for electrochemical double-layer capacitor electrodes were prepared from peasecod-based carbons using ZnCl2 or KOH as activating agents. The pore structures of the prepared activated carbon materials were characterized using N2 adsorption. The specific surface area of the peasecod-based carbon materials increased obviously from 1.69 m2·g-1 to 2237 m2·g-1 by KOH activation and to 621 m2·g-1 by ZnCl2 treatment. The electrochemical properties of the prepared peasecod-based activated carbon materials were evaluated by cyclic voltammetry and galvanostatic charge-discharge, and a specific capacitance as high as 297.5 F·g-1 in 6 mol·L-1 KOH aqueous electrolyte was obtained for the KOH-treated carbon material. Additionally, the KOH-activated peasecod-based carbon material showed excellent long-term charge-discharge cycle stability and a 8.6% decrease in the specific capacitance was observed at a high current density of 5 A·g-1 after 500 cycles.

  • 加载中
    1. [1]

      (1) Zhang, X.; Ji, L.Y.; Zhang, S. C.; Yang,W. S. J. Power Sources 2007, 173, 1017.  

    2. [2]

      (2) Lee, S. I.; Mitani, S.; Park, C.W.; Yoon, S. H.; Korai, Y.; Mochida, I. J. Power Sources 2005, 139, 379.  

    3. [3]

      (3) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer-Plenum Press: New York, 1999; pp 6-7.

    4. [4]

      (4) Chen, H.; Chen, J. S.; Zhou, H. H.; Jiao, S. Q.; Chen, J. H.; Kuang, Y. F. Acta Phys. -Chim. Sin. 2004, 20, 593. [陈宏, 陈劲松, 周海晖, 焦树强, 陈金华, 旷亚非. 物理化学学报, 2004, 20, 593.]

    5. [5]

      (5) Wang, X. F.;Wang, D. Z.; Liang, J. Acta Phys. -Chim. Sin. 2005, 21, 117. [王晓峰, 王大志, 梁吉. 物理化学学报, 2005, 21, 117.]

    6. [6]

      (6) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11.  

    7. [7]

      (7) Frackowiak, E.; Beguin, F. Carbon 2002, 40, 1775.  

    8. [8]

      (8) Rufford, T. E.; Hulicova-Jurcakova, D.; Khosla, K.; Zhu, Z. H.; Lu, G. Q. J. Power Sources 2010, 195, 912.  

    9. [9]

      (9) Subramanian, V.; Luo, C.; Stephan, A. M.; Nahm, K. S.; Thomas, S.;Wei, B. J. Phys. Chem. C 2007, 111, 7527.  

    10. [10]

      (10) Wu, F. C.; Tseng, R. L.; Hu, C. C.;Wang, C. C. J. Power Sources 2004, 138, 351.

    11. [11]

      (11) Wu, F. C.; Tseng, R. L.; Hu, C. C.;Wang, C. C. J. Power Sources 2005, 144, 302.

    12. [12]

      (12) Raymundo-Pinero, E.; Leroux, F.; Béguin, F. Advanced Materials 2006, 18, 1877.  

    13. [13]

      (13) Balathanigaimani, M. S.; Shim,W. G.; Lee, M. J.; Kim, C. H.; Lee, J.W.; Moon, H. Electrochem. Commun. 2008, 10, 868.  

    14. [14]

      (14) Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z. H.; Lu, G. Q. Electrochem. Commun. 2008, 10, 1594.  

    15. [15]

      (15) Kim, Y. J.; Lee, B. J.; Suezaki, H.; Chino, T.; Abe, Y.; Yanagiura, T.; Park, K. C.; Endo, M. Carbon 2006, 44, 1592.  

    16. [16]

      (16) Guo, Y. P.; Qi, J. R.; Jiang, Y. Q.; Yang, S. F.;Wang, Z. C.; Xu, H. D. Mater. Chem. Phys. 2003, 80, 704.  

    17. [17]

      (17) Hu, C. C.;Wang, C. C.;Wu, F. C.; Tseng, R. L. Electrochim. Acta 2007, 52, 2498.  

    18. [18]

      (18) Olivares-Marína, M.; Fernández, J. A.; Lázaro, M. J.; Fernández- nzález, C.; Macías-García, A.; Gómez-Serrano, V.; Stoeckli, F.; Centenob, T. A. Mater. Chem. Phys. 2009, 114, 323.  

    19. [19]

      (19) Liu, Y. F.; Hu. Z. H.; Xu. K. Acta Phys. -Chim. Sin. 2008, 24, 1143. [刘亚菲, 胡中华, 许琨. 物理化学学报, 2008, 24, 1143.]  

    20. [20]

      (20) Song, R. Y.; Park, J. H.; Sivakkumar, S. R.; Kim, S. H.; Ko, J. M.; Park, D. Y.; Jo, S. M.; Kim, D. Y. J. Power Sources 2007, 166, 297.  

    21. [21]

      (21) Ruthven, D. M. Principles of Adsorption and Desorption Processes;Wiley: New York, 1984; pp 55-58.

    22. [22]

      (22) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.  

    23. [23]

      (23) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Edit. 2008, 47, 373.

    24. [24]

      (24) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.  

    25. [25]

      (25) Guo, H. L.; Gao, Q. M. J. Power Sources 2009, 186, 551.  

    26. [26]

      (26) Xia, K. S.; Gao, Q. M.; Jiang, J. H.; Hu, J. Carbon 2008, 46, 1718.  

    27. [27]

      (27) Kalpana, D.; Cho, S. H.; Lee, S. B.; Lee, Y. S.; Misra, R.; Renganathan, N. G. J. Power Sources 2009, 190, 587.  


  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    17. [17]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

Metrics
  • PDF Downloads(1202)
  • Abstract views(2514)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return