Citation: ZHANG Xuan-Zhou, YANG Jun-Zhi, SONG Ping, TIAN Wen-Huai, LI Xing-Guo. Synthesis and Cyclic Hydrogenation Properties of Magnesium Ultrafine Nanoparticles Prepared by Acetylene Plasma[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1707-1711. doi: 10.3866/PKU.WHXB20110622 shu

Synthesis and Cyclic Hydrogenation Properties of Magnesium Ultrafine Nanoparticles Prepared by Acetylene Plasma

  • Received Date: 9 March 2011
    Available Online: 4 May 2011

    Fund Project: 国家自然科学基金(20971009, 20821091, 51071003) (20971009, 20821091, 51071003)国家重点基础研究发展规划(973) (2009CB939902, 2010CB631301)资助项目 (973) (2009CB939902, 2010CB631301)

  • Ultrafine Mg nanoparticles of around 40 nm in size were prepared by an acetylene plasma metal reaction, which is a revised approach of the traditional hydrogen plasma metal reaction. The morphology and the cyclic hydrogenation properties were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), specific surface area (BET) tests, and the kinetics of hydrogenation and dehydrogenation. Because of the short diffusion distance and the large specific surface area, the kinetics of hydrogenation and dehydrogenation of the small Mg nanoparticles improved. The nanostructured carbon cover on the Mg nanoparticles decreased the amount of Mg nanoparticle oxidation and also prevented the growth of Mg nanoparticles during the hydrogenation and dehydrogenation process. Therefore, the Mg ultrafine nanoparticles exhibited excellent cycling stability. Cycling tests showed little loss in hydrogen storage capacity after 30 cycles.

  • 加载中
    1. [1]

      (1) Dornheim, M.; Doppiu, S.; Barkhordarian, G.; Boesenberg, U.; Klassen, T.; Gutfleisch, O.; Bormann, R. Scripta Mater. 2007, 56, 841.  

    2. [2]

      (2) Huot, J.; Liang, G.; Schulz, R. Appl. Phys. A 2001, 72, 187.  

    3. [3]

      (3) Shao, H. Y.; Xu, H. R.;Wang, Y. T.; Li, X. G. Nanotechnology 2004, 15, 269.  

    4. [4]

      (4) Shao, H. Y.; Xu, H. R.;Wang, Y. T.; Li, X. G. J. Solid State Chem. 2004, 177, 3626.  

    5. [5]

      (5) Karty, A.; Grunzweiggenossar, J.; Rudman, P. S. J. Appl. Phys. 1979, 50, 7200.  

    6. [6]

      (6) Zhang, X. Z.; Yang, R.; Qu, J. L.; Zhao,W.; Xie, L.; Tian,W. H.; Li, X. G. Nanotechnology 2010, 21, 095706.  

    7. [7]

      (7) Shao, H. Y.;Wang, Y. T.; Xu, H. R; Li, X. G. J. Solid State Chem. 2005, 178, 2211.  

    8. [8]

      (8) Xie, L.; Liu, Y.;Wang, Y. T.; Zheng, J.; Li, X. G. Acta Mater. 2007, 55, 4585.  

    9. [9]

      (9) Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. J. Alloy. Compd. 1999, 292, 247.  

    10. [10]

      (10) Huot, J.; Pelletier, J. F.; Lurio, L. B.; Sutton, M.; Schulz, R. J. Alloy. Compd. 2003, 348, 319.

    11. [11]

      (11) Shang, C. X.; Bououdina, M.; Song, Y.; Guo, Z. X. Int. J. Hydrog. Energy 2004, 29, 73.

    12. [12]

      (12) Bazzanella, N.; Checchetto, R.; Miotello, A. Appl. Phys. Lett. 2004, 85, 5212.  

    13. [13]

      (13) Hanada, N.; Ichikawa, T.; Fujii, H. J. Phys. Chem. B 2005, 109, 7188.  

    14. [14]

      (14) Bobet, J. L.; Akiba, E.; Nakamura, Y.; Darriet, B. Int. J. Hydrog. Energy 2000, 25, 987.  

    15. [15]

      (15) Friedrichs, O.; Aguey-Zinsou, F.; Fernandez, J. R. A.; Sanchez-Lopez, J. C.; Justo, A.; Klassen, T.; Bormann, R. Fernandez, A. Acta Mater. 2006, 54, 105.  

    16. [16]

      (16) Shao, H. Y.;Wang, Y. T.; Xu, H. R.; Li, X. G. Mater. Sci. Eng. B 2004, 110, 221.  

    17. [17]

      (17) Zaluska, A.; Zaluski, L.; Strom-Olsen, J. O. J. Alloy. Compd. 1999, 288, 217.  

    18. [18]

      (18) Huot, J.; Liang, G.; Boily, S.; Van Neste, A.; Schulz, R. J. Alloy. Compd. 1999, 293, 495.  

    19. [19]

      (19) Kwon, I. H.; Bobet, J. L.; Bae, J. S.; Song, M. Y. J. Alloy. Compd. 2005, 396, 264.  

    20. [20]

      (20) Varin, R. A.; Czujko, T.; Chiu, C.;Wronski, Z. J. Alloy. Compd. 2006, 424, 356.  

    21. [21]

      (21) Varin, R. A.; Czujko, T.;Wronski, Z. Nanotechnology 2006, 17, 3856.  

    22. [22]

      (22) Muller, F.; Polke, R. F. Powder Tech. 1999, 105, 2.  

    23. [23]

      (23) Koch, C. C. Nanostructured Materials 1997, 9, 13.  

    24. [24]

      (24) Aguey-Zinsou, K. F.; Ares-Fernandez, J. R. Chem. Mater. 2008, 20, 376.  

    25. [25]

      (25) de Jongh, P. E.;Wagemans, R.W. P.; Eggenhuisen, T. M.; Dauvillier, B. S.; Radstake, P. B.; Meeldijk, J. D.; Geus, J.W.; de Jong, K. P. Chem. Mater. 2007, 19, 6052.  

    26. [26]

      (26) Vigeholm, B.; Kjoller, J.; Larsen, B. J. Alloy. Compd. 1980, 74, 341.


  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    5. [5]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(988)
  • Abstract views(2534)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return