Citation: QIU Wei, REN Cheng-Jun, NG Mao-Chu, HOU Yun-Ze, CHEN Yao-Qiang. Structure, Surface Properties and Photocatalytic Activity of TiO2 and TiO2/SiO2 Catalysts Prepared at Different pH Values[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1487-1492. doi: 10.3866/PKU.WHXB20110621 shu

Structure, Surface Properties and Photocatalytic Activity of TiO2 and TiO2/SiO2 Catalysts Prepared at Different pH Values

  • Received Date: 25 February 2011
    Available Online: 4 May 2011

  • TiO2 and SiO2-doped TiO2 (TiO2/SiO2) catalysts were prepared using aqueous solutions containing a TiOSO4 and/or SiO2 sol in which NH3·H2O was used to adjust the pH value by a precipitation method. The as-synthesized photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption (BET), UV-Vis diffuse reflectance spectroscopy, NH3 temperature programmed desorption (NH3-TPD), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns showed that anatase and rutile coexisted in the as-prepared TiO2 and the rutile phase content increased with the increase in pH value. However, only anatase-TiO2 was observed in the TiO2/SiO2 catalysts. SEM revealed that the surface morphology of the particles was a sub-spherical shape and some agglomeration occurred on the surface while the particle size was mostly between 10 and 25 nm. Surface area measurements showed that the surface areas of the catalysts increased slightly with the increase in pH value. The incorporation of SiO2 increased the surface area. NH3-TPD analysis indicated that the amount of surface acid increased as the pH increased. The amount of surface acid on SiO2-doped TiO2 was higher than that on TiO2 when they were prepared at identical pH values. The addition of silica and the high pH value environment led to more surface hydroxyl groups on the catalysts as determined by FT-IR spectroscopy. The photocatalytic activity of the catalysts improved remarkably with the increase in pH value. The photocatalytic activity of SiO2-doped TiO2 is better than that of TiO2. The TiO2/SiO2 catalyst has better durability.

  • 加载中
    1. [1]

      (1) Kim, D. S.; Kwak, S. Y. Appl. Catal. A: Gen. 2007, 323, 110.

    2. [2]

      (2) Hu, Y. F.; Li, Y. X.; Peng, S. Q,; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071.

    3. [3]

      [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.]

    4. [4]

      (3) Bao, N.; Zhang, F.; Ma, Z. H.;Wei, Z. T.; Sun, J.; Liu, F. Acta Chim. Sin. 2007, 65 (23), 2786.

    5. [5]

      [包南, 张锋, 马志会, 魏振涛, 孙剑, 刘峰. 化学学报, 2007, 65 (23), 2786.]

    6. [6]

      (4) Chen, Y. H.; Shen, J.; Zhang, Z. Chin. J. Catal. 2008, 29 (4), 356.

    7. [7]

      [陈垚翰, 沈俊, 张昭. 催化学报, 2008, 29 (4): 356.]

    8. [8]

      (5) Kang, C. H.; Guo, T.; Jing, L. Q.; Cui, H. C.; Zhou, J.; Fu, H. G. J. Inorg. Mater. 2009, 24 (2), 229.

    9. [9]

      [康传红, 郭桐, 井立强, 崔虎成, 周佳, 付宏刚, 无机材料学报, 2009, 24 (2), 229.]

    10. [10]

      (6) Liu, Z. H.; Su, X. J.; Hou, G. L. J. Inorg. Mater. 2010, 25 (9), 911.

    11. [11]

      [刘朝辉, 苏勋家, 侯根良. 无机材料学报, 2010, 25 (9), 911.]

    12. [12]

      (7) Wang, G. P.; Qiu,W.; Ren, C. J.; Chai, J. J.; Dong,W.; Chen, Y. Q.; ng, M. C. Chin. J. Catal. 2009, 30 (9), 913.

    13. [13]

      [王光平, 仇伟, 任成军, 柴军军, 董伟, 陈耀强, 龚茂初. 催化学报, 2009, 30 (9), 913.]

    14. [14]

      (8) Wang, E. J.; Yang, Y. H.; Cao, Y. A. Acta Chim. Sin. 2009, 67 (24), 2759.

    15. [15]

      [王恩君, 杨辉云, 曹亚安. 化学学报, 2009, 67 (24), 2759.]

    16. [16]

      (9) Yang, C. S.;Wang, Y. J.; Shih, M. S.; Chang, Y. T.; Hon, C. C. Appl. Catal. A: Gen. 2009, 364, 182.

    17. [17]

      (10) Huang,W. P.; Tang, X. H.;Wang,Y. Q.; Koltypin,Y.; Gedanken, A. Chem. Commun. 2000, 1415.

    18. [18]

      (11) Pottier, A.; Chanéac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J. P. J. Mater. Chem. 2001, 11, 1116.

    19. [19]

      (12) Zhang, Y.;Wu, L. Z.; Zeng, Q. H.; Zhi, J. F. J. Phys. Chem. C 2008, 112, 16457.

    20. [20]

      (13) Yu, J. G.; Su, Y. R.; Cheng, B.; Zhou, M. H. J. Mol. Catal. A: Chem. 2006, 258, 104.

    21. [21]

      (14) Aguado, J.; van Grieken, R.; López-Mu?oz, M. J.; Marugán, J. Appl. Catal. A: Gen. 2006, 312, 202.

    22. [22]

      (15) Bai, Y.; Sun, H. Q.; Jin,W. Q. J. Inorg. Mater. 2008, 23 (2), 387.

    23. [23]

      [柏源, 孙红旗, 金万勤, 无机材料学报, 2008, 23 (2), 387.]

    24. [24]

      (16) Li, Y.; White, T. J.; Lim, S. H. J. Solid State Chem. 2004, 177, 1372.

    25. [25]

      (17) Li, Y. Z.; Kim, S. J. J. Phys. Chem. B 2005, 109, 12309.

    26. [26]

      (18) Yanagisawa, K.; Ovenstone, J. J. Phys. Chem. B 1999, 103, 7781.

    27. [27]

      (19) Lim, S. H.; Phonthammachai, N.; Pramana, S. S.; White, T. J. Langmuir 2008, 24, 6226.

    28. [28]

      (20) He, C. X.; Tian, B. Z.; Zhang, J. L. J. Colloid Interface Sci. 2010, 344, 382.

    29. [29]

      (21) Tobaldi, D. M.; Tucci, A.; Skapin, A. S.; Esposito, L. J. Eur. Ceram. Soc. 2010, 30, 2481.

    30. [30]

      (22) Dong,W. Y.; Sun, Y. J.; Lee, C.W.; Hua,W. M.; Lu, X. C.; Shi, Y. F.; Zhang, S. C.; Chen, J. M.; Zhao, D. Y. J. Am. Chem. Soc. 2007, 129, 13894.

    31. [31]

      (23) Cho, K.; Chang, H.; Park, J. H.; Kim, B. G.; Jang, H. D. J. Ind. Eng. Chem. 2008, 14, 860.

    32. [32]

      (24) Bonelli, B.; Cozzolino, M.; Tesser, R.; Di, Serio M.; Piumetti, M.; Garrone, E.; Santacesaria, E. J. Catal. 2007, 246, 293.

    33. [33]

      (25) Hou, Y. D.;Wang, X. C.;Wu, L.; Chen, X. F.; Ding, Z. X.; Wang, X. X.; Fu, X. Z. Chemosphere 2008, 72, 414.

    34. [34]

      (26) Prinetto, F.; Ghiotti, G.; Occhhiuzzi, M.; Indovia, V. J. Phys. Chem. B 1998, 102, 10316.

    35. [35]

      (27) Marc?, G.; Augugliaro, V.; Rives, V.; Tilley, R. D.; Venezia, A. M. J. Phys. Chem. B 2001, 105, 1033.

    36. [36]

      (28) Akurati, K. K.; Vital, A.; Dellemann, J. P.; Michalow, K.; Graule, T.; Ferri, D.; Baiker, A. Appl. Catal. B: Environ. 2008, 79, 53.

    37. [37]

      (29) Onfroy, T.; Clet, G.; Houalla, M. J. Phys. Chem. B 2005, 109, 14588.

    38. [38]

      (30) Wang, X. C.; Yu, J. C.; Liu P.;Wang, X. X.; Su,W. Y.; Fu, X. Z. J. Photochem. Photobiol. A: Chem. 2006, 179, 339.


  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

Metrics
  • PDF Downloads(1600)
  • Abstract views(3186)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return