Citation: SUN Du, YIN Peng-Gang, GUO Lin. Synthesis and Raman Property of Porous Jujube-Like Cu2O Hierarchy Structure[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1543-1550. doi: 10.3866/PKU.WHXB20110619 shu

Synthesis and Raman Property of Porous Jujube-Like Cu2O Hierarchy Structure

  • Received Date: 4 March 2011
    Available Online: 3 May 2011

    Fund Project: 国家重点基础研究发展规划(973) (2010CB934700) (973) (2010CB934700) 国家自然科学基金(50725208, 20973019) (50725208, 20973019)高等学校博士学科点专项科研基金(20091102110035)资助项目 (20091102110035)

  • Structural engineering of nanocrystals is of great importance to control the properties of semiconductor oxides. Here, we present a mild wet chemical reduction route to obtain a sub-micron porous jujube-like Cu2O hierarchy structure. Sodium dodecylbenzene sulfonate (SDBS) is crucial in structural regulation and it acts as a soft template and a capping agent. The jujube-like particle consists of crystal grains less than 10 nm in size as verified by transmission electron microscopy (TEM) and X-ray diffraction (XRD). A set of time control experiments were carried out to study the evolution of the jujube-like structure. Interestingly, we found that altering the amount of added HCl resulted in a size-tuning effect of changing the size of the particles from approximately 300 to 900 nm. Based on these results, we propose a possible growth-etching competition mechanism to explain the formation of the hollow interior and its porous nature, which also agrees with the sizing-tuning effect. The optical properties were analyzed using Raman spectroscopy. By comparison with a conventional sub-micron solid polyhedral we found a novel Raman property for the porous jujube-like Cu2O. Our research complements the library of Cu2O Raman spectra, which is meaningful for the nondestructive examination of pigments on the surface of antiques by Raman techniques.

  • 加载中
    1. [1]

      (1) Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.

    2. [2]

      (2) Zhang, H. G.; Zhu, Q. S.; Zhang, Y.;Wang, Y.; Zhao, L.; Yu, B. Adv. Funct. Mater. 2007, 17, 2766.

    3. [3]

      (3) Ho, J. Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159.

    4. [4]

      (4) Yuhas, B. D.; Yang, P. D. J. Am. Chem. Soc. 2009, 131, 3756.

    5. [5]

      (5) Zhang, J. T.; Liu, J. F.; Peng, Q.;Wang, X.; Li, Y. D. Chem. Mater. 2006, 18, 867.

    6. [6]

      (6) Bor hain, K.; Murase, N.; Mahamuni, S. J. Appl. Phys. 2002, 92, 1292.

    7. [7]

      (7) Yin, M.;Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O′Brien, S. J. Am. Chem. Soc. 2005, 127, 9506.

    8. [8]

      (8) Wang,W. Z.;Wang, G. H.;Wang, X. S.; Zhan, Y. J.; Liu, Y. K.; Zheng, C. L. Adv. Mater. 2002, 14, 67.

    9. [9]

      (9) Tan, Y.W.; Xue, X. Y.; Peng, Q.; Zhao, H.;Wang, T. H.; Li, Y. D. Nano Lett. 2007, 7, 3723.

    10. [10]

      (10) Ng, C. H. B.; Fan,W. Y. J. Phys. Chem. B 2006, 110, 20801.

    11. [11]

      (11) Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. J. Mater. Chem. 2009, 19, 5220.

    12. [12]

      (12) Xu, H.;Wang,W. Angew. Chem. Int. Edit. 2007, 46, 1489.

    13. [13]

      (13) Luo, Y. S.; Li, S. Q.; Ren, Q. F.; Liu, J. P.; Xing, L. L.;Wang, Y.; Yu, Y.; Jia, Z. J.; Li, J. L. Cryst. Growth & Des. 2007, 7, 87.

    14. [14]

      (14) McShane, C. M.; Choi, K. J. Am. Chem. Soc. 2009, 131, 2561.

    15. [15]

      (15) Xu, J.; Tang, Y. B.; Zhang,W. X.; Lee, C. S.; Yang, Z. H.; Lee, S. T. Cryst. Growth & Des. 2009, 9, 4524.

    16. [16]

      (16) Burgio, L.; Ciomartan, D. A.; Clark, R. J. Mol. Struct. 1997, 405, 1.

    17. [17]

      (17) Burrafato, G.; Calabrese, M.; Cosentino, A.; Gueli, A. M.; Troja, S. O.; Zuccarello, A. J. Raman Spectrosc. 2004, 35, 879.

    18. [18]

      (18) Clark, R.; van derWeerd, J. J. Raman Spectrosc. 2004, 35, 279.

    19. [19]

      (19) Galli, S.; Mastelloni, M.; Ponterio, R.; Sabatino, G.; Triscari, M. J. Raman Spectrosc. 2004, 35, 622.

    20. [20]

      (20) Welter, N.; Schussler, U.; Kiefer,W. J. Raman Spectrosc. 2007, 38, 113.

    21. [21]

      (21) Zhang, Y. J.; Or, S.W.;Wang, X. L.; Cui, T. Y.; Cui,W. B.; Zhang, Y.; Zhang, Z. D. Eur. J. Inorg. Chem. 2009, 2009, 168.

    22. [22]

      (22) Jia,W. Z.; Reitz, E.; Sun, H.; Li, B.; Zhang, H.; Lei, Y. J. Appl. Phys. 2009, 105, 064917.

    23. [23]

      (23) Wang, X. Q.; Xi, G. C.; Xiong, S. L.; Liu, Y. K.; Xi, B. J.; Yu, W. C.; Qian, Y. T. Cryst. Growth & Des. 2007, 7, 930.

    24. [24]

      (24) Zhang, Y.; Zhang, Y.;Wang, Z.; Li, D.; Cui, T.; Liu,W.; Zhang, Z. Eur. J. Inorg. Chem. 2008, 2008, 2733.

    25. [25]

      (25) Kuo, C.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.

    26. [26]

      (26) Huang, K. Zeitschrift für Physikalische Chemie 1963, 171, 213.

    27. [27]

      (27) Balkanski, M.; Nusimovici, M. A.; Reydellet, J. Solid. State Commun. 1969, 7, 815.

    28. [28]

      (28) Reydellet, J.; Balkanski, M.; Trivich, D. Phys. Stat. Sol. B 1972, 52, 175.

    29. [29]

      (29) Dawson, P.; Hargreave, M. M.;Wilkinson, G. R. J. Phys. Chem. Solids 1973, 34, 2201.

    30. [30]

      (30) Zhang, H.; Zhang, D. F.; Guo, L.; Zhang, R.; Yin, P. G.;Wang, R. M. J. Nanosci. Nanotechno. 2008, 8, 6332.

    31. [31]

      (31) Solache-Carranco, H.; Juarez-Diaz, G.; Martinez-Juarez, J.; Pena-Sierra, R. Rev. Mex. Fis. 2009, 55, 393.


  • 加载中
    1. [1]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    6. [6]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    7. [7]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    8. [8]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(1871)
  • Abstract views(2735)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return