Citation: HAN Guang-Zhan, ZHANG Chao, GAO Ji-Gang, QIAN Ping. Quantum Chemistry Study on the Stable Structures of C2H5OH(H2O)n (n=1-9) Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1361-1371. doi: 10.3866/PKU.WHXB20110612 shu

Quantum Chemistry Study on the Stable Structures of C2H5OH(H2O)n (n=1-9) Clusters

  • Received Date: 14 January 2011
    Available Online: 26 April 2011

    Fund Project: 国家自然科学基金(20903063) (20903063)山东农业大学青年科技创新基金(23480)资助项目 (23480)

  • We studied C2H5OH(H2O)n (n=1-9) clusters using density functional theory (DFT) at the B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p) level. We calculated the properties that characterize the C2H5OH (H2O)n (n=1-9) clusters and these include optimal structures, structural parameters, hydrogen bonds, binding energies, average hydrogen bond strength, natural bond orbital (NBO) charge distributions, and cluster growth rhythm, etc. The results show that the transition from two-dimensional (2-D) cyclic structure to three-dimensional (3-D) cage structure occurs at n=5. Moreover, the lowest energy structure of the C2H5OH(H2O)n (n=6) cluster is probably a magic number structure as determined by the properties of the second order difference of the binding energy, the formation energy, and the energy gap. Finally, to probe the nature of the hydrogen bond, the properties of the lowest energy structures for the C2H5OH(H2O)n (n=2-9) clusters were compared with those of pure water clusters (H2O)n (n=3-10), and our results show that the hydrogen bonds that form between water molecules in the former are similar to those in the latter.

  • 加载中
    1. [1]

      (1) Travers, F.; Douzou, P. J. Phys. Chem. 1970, 74, 2243.

    2. [2]

      (2) Teli, S. B.; kavi, G. S.; Sairam, M.; Aminabhavi, T. M. Colloids Surf. A 2007, 301, 55.

    3. [3]

      (3) Odriozola, G.; Schmitt, A.; Callejas-Fernández, J.; Hidal -álvarez, R. J. Colloid Interface Sci. 2007, 310, 471.

    4. [4]

      (4) Martinez-Andreu, A.; Vercher, E.; Pe?a, M. P. J. Chem. Eng. Data 1999, 44, 86.

    5. [5]

      (5) Farrell, A. E.; Plevin, R. J.; Turner, B. T.; Jones, A. D.; O′Hare, M.; Kammen, D. M. Science 2006, 311, 506.

    6. [6]

      (6) Yaman, S. Energy Convers. Manage. 2004, 45, 651.

    7. [7]

      (7) Chum, H. L.; Overend, R. P. Fuel Process. Technol. 2001, 71, 187.

    8. [8]

      (8) Coccia, A.; Indovina, P. L.; Podo, F.; Viti, V. Chem. Phys. 1975, 7, 30.

    9. [9]

      (9) Nishi, N.; Takahashi, S.; Matsumoto, M.; Tanaka, A.; Muraya, K.; Takamuku, T.; Yamaguchi, T. J. Phys. Chem. 1995, 99, 462.

    10. [10]

      (10) Petrillo, C.; Onori, G.; Sacchetti, F. Mol. Phys. 1989, 67, 697. (11) Sidhu, K. S.; odfellow, J. M.; Turner, J. Z. J. Chem. Phys. 1999, 110, 7943.

    11. [11]

      (12) Masella, M.; Flament, J. P. J. Chem. Phys. 1998, 108, 7141.

    12. [12]

      (13) Katrib, Y.; Mirabel, P.; Le Calvé, S.;Weck, G.; Kochanski, E. J. Phys. Chem. B 2002, 106, 7237.

    13. [13]

      (14) Oliveira, B. G.; Vasconcellos, M. J. Mol. Struct. –Theochem 2006, 774, 83.

    14. [14]

      (15) Wakisaka, A.; Matsuura, K. J. Mol. Liq. 2006, 129, 25.

    15. [15]

      (16) Mejia, S. M.; Espinal, J. F.; Restrepo, A.; Mondra n, F. J. Phys. Chem. A 2007, 111, 8250.

    16. [16]

      (17) Mejía, S. M.; Espinal, J. F.; Mondragón, F. J. Mol. Struct. -Theochem 2009, 901, 186.

    17. [17]

      (18) Nedi?, M.;Wassermann, T. N.; Xue, Z. F.; Zielke, P.; Suhm, M. A. Phys. Chem. Chem. Phys. 2008, 10, 5953.

    18. [18]

      (19) Zhanpeisov, N. U.; Takanashi, S.; Kajimoto, S.; Fukumura, H. Chem. Phys. Lett. 2010, 491, 151.

    19. [19]

      (20) nzález, L.; M??, O.; Yá?ez, M.; Elguero, J. J. Mol. Struct. -Theochem 1996, 371, 1.

    20. [20]

      (21) Guerra, C. F.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. J. Am. Chem. Soc. 2000, 122, 4117.

    21. [21]

      (22) Tsuzuki, S.; L?thi, H. J. Chem. Phys. 2001, 114, 3949.

    22. [22]

      (23) Wu, X.; Vargas, M.; Nayak, S.; Lotrich, V.; Scoles, G. J. Chem. Phys. 2001, 115, 8748.

    23. [23]

      (24) Johnson, E.; DiLabio, G. Chem. Phys. Lett. 2006, 419, 333.

    24. [24]

      (25) Mirzaei, M.; Hadipour, N. L. J. Phys. Chem. A 2006, 110, 4833.

    25. [25]

      (26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    26. [26]

      (27) Borowski, P.; Janowski, T.;Wolinski, K. Mol. Phys. 2000, 98, 1331.

    27. [27]

      (28) Sasada, Y.; Takano, M.; Satoh, T. J. Mol. Spectrosc. 1971, 38, 33.

    28. [28]

      (29) Culot, J. P. Symposium on Gas Phase Molecular Structure, 4th ed.; Austin, 1972, paper T8.

    29. [29]

      (30) Fileti, E. E.; Chaudhuri, P.; Canuto, S. Chem. Phys. Lett. 2004, 400, 494.

    30. [30]

      (31) Qian, P.; Song,W.; Lu, L.; Yang, Z. Z. Int. J. Quantum Chem. 2010, 110, 1923.

    31. [31]

      (32) Qian, P.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2006, 22, 561.

    32. [32]

      [钱萍, 杨忠志. 物理化学学报, 2006, 22, 561.]

    33. [33]

      (33) Wang, G. H. Cluster Physics; Shanghai Scientific & Technical Publisher: Shanghai, 2003.

    34. [34]

      [王广厚. 团簇物理学. 上海: 上海科学技术出版社, 2003.]

    35. [35]

      (34) Yang, H.; Zhao, F.; Zhou, P.;Wang, Q. J.; Zhang, Y. E.; Hu,W. J. Journal of Xihua University: Natural Science Edition 2008, 27, 63.

    36. [36]

      [杨华, 赵飞, 周鹏, 王全军, 张艳娥, 胡维军. 西华大学学报(自然科学版), 2008, 27, 63.]


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    14. [14]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(1214)
  • Abstract views(3479)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return