Citation: HAN Guang-Zhan, ZHANG Chao, GAO Ji-Gang, QIAN Ping. Quantum Chemistry Study on the Stable Structures of C2H5OH(H2O)n (n=1-9) Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1361-1371. doi: 10.3866/PKU.WHXB20110612 shu

Quantum Chemistry Study on the Stable Structures of C2H5OH(H2O)n (n=1-9) Clusters

  • Received Date: 14 January 2011
    Available Online: 26 April 2011

    Fund Project: 国家自然科学基金(20903063) (20903063)山东农业大学青年科技创新基金(23480)资助项目 (23480)

  • We studied C2H5OH(H2O)n (n=1-9) clusters using density functional theory (DFT) at the B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p) level. We calculated the properties that characterize the C2H5OH (H2O)n (n=1-9) clusters and these include optimal structures, structural parameters, hydrogen bonds, binding energies, average hydrogen bond strength, natural bond orbital (NBO) charge distributions, and cluster growth rhythm, etc. The results show that the transition from two-dimensional (2-D) cyclic structure to three-dimensional (3-D) cage structure occurs at n=5. Moreover, the lowest energy structure of the C2H5OH(H2O)n (n=6) cluster is probably a magic number structure as determined by the properties of the second order difference of the binding energy, the formation energy, and the energy gap. Finally, to probe the nature of the hydrogen bond, the properties of the lowest energy structures for the C2H5OH(H2O)n (n=2-9) clusters were compared with those of pure water clusters (H2O)n (n=3-10), and our results show that the hydrogen bonds that form between water molecules in the former are similar to those in the latter.

  • 加载中
    1. [1]

      (1) Travers, F.; Douzou, P. J. Phys. Chem. 1970, 74, 2243.

    2. [2]

      (2) Teli, S. B.; kavi, G. S.; Sairam, M.; Aminabhavi, T. M. Colloids Surf. A 2007, 301, 55.

    3. [3]

      (3) Odriozola, G.; Schmitt, A.; Callejas-Fernández, J.; Hidal -álvarez, R. J. Colloid Interface Sci. 2007, 310, 471.

    4. [4]

      (4) Martinez-Andreu, A.; Vercher, E.; Pe?a, M. P. J. Chem. Eng. Data 1999, 44, 86.

    5. [5]

      (5) Farrell, A. E.; Plevin, R. J.; Turner, B. T.; Jones, A. D.; O′Hare, M.; Kammen, D. M. Science 2006, 311, 506.

    6. [6]

      (6) Yaman, S. Energy Convers. Manage. 2004, 45, 651.

    7. [7]

      (7) Chum, H. L.; Overend, R. P. Fuel Process. Technol. 2001, 71, 187.

    8. [8]

      (8) Coccia, A.; Indovina, P. L.; Podo, F.; Viti, V. Chem. Phys. 1975, 7, 30.

    9. [9]

      (9) Nishi, N.; Takahashi, S.; Matsumoto, M.; Tanaka, A.; Muraya, K.; Takamuku, T.; Yamaguchi, T. J. Phys. Chem. 1995, 99, 462.

    10. [10]

      (10) Petrillo, C.; Onori, G.; Sacchetti, F. Mol. Phys. 1989, 67, 697. (11) Sidhu, K. S.; odfellow, J. M.; Turner, J. Z. J. Chem. Phys. 1999, 110, 7943.

    11. [11]

      (12) Masella, M.; Flament, J. P. J. Chem. Phys. 1998, 108, 7141.

    12. [12]

      (13) Katrib, Y.; Mirabel, P.; Le Calvé, S.;Weck, G.; Kochanski, E. J. Phys. Chem. B 2002, 106, 7237.

    13. [13]

      (14) Oliveira, B. G.; Vasconcellos, M. J. Mol. Struct. –Theochem 2006, 774, 83.

    14. [14]

      (15) Wakisaka, A.; Matsuura, K. J. Mol. Liq. 2006, 129, 25.

    15. [15]

      (16) Mejia, S. M.; Espinal, J. F.; Restrepo, A.; Mondra n, F. J. Phys. Chem. A 2007, 111, 8250.

    16. [16]

      (17) Mejía, S. M.; Espinal, J. F.; Mondragón, F. J. Mol. Struct. -Theochem 2009, 901, 186.

    17. [17]

      (18) Nedi?, M.;Wassermann, T. N.; Xue, Z. F.; Zielke, P.; Suhm, M. A. Phys. Chem. Chem. Phys. 2008, 10, 5953.

    18. [18]

      (19) Zhanpeisov, N. U.; Takanashi, S.; Kajimoto, S.; Fukumura, H. Chem. Phys. Lett. 2010, 491, 151.

    19. [19]

      (20) nzález, L.; M??, O.; Yá?ez, M.; Elguero, J. J. Mol. Struct. -Theochem 1996, 371, 1.

    20. [20]

      (21) Guerra, C. F.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. J. Am. Chem. Soc. 2000, 122, 4117.

    21. [21]

      (22) Tsuzuki, S.; L?thi, H. J. Chem. Phys. 2001, 114, 3949.

    22. [22]

      (23) Wu, X.; Vargas, M.; Nayak, S.; Lotrich, V.; Scoles, G. J. Chem. Phys. 2001, 115, 8748.

    23. [23]

      (24) Johnson, E.; DiLabio, G. Chem. Phys. Lett. 2006, 419, 333.

    24. [24]

      (25) Mirzaei, M.; Hadipour, N. L. J. Phys. Chem. A 2006, 110, 4833.

    25. [25]

      (26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    26. [26]

      (27) Borowski, P.; Janowski, T.;Wolinski, K. Mol. Phys. 2000, 98, 1331.

    27. [27]

      (28) Sasada, Y.; Takano, M.; Satoh, T. J. Mol. Spectrosc. 1971, 38, 33.

    28. [28]

      (29) Culot, J. P. Symposium on Gas Phase Molecular Structure, 4th ed.; Austin, 1972, paper T8.

    29. [29]

      (30) Fileti, E. E.; Chaudhuri, P.; Canuto, S. Chem. Phys. Lett. 2004, 400, 494.

    30. [30]

      (31) Qian, P.; Song,W.; Lu, L.; Yang, Z. Z. Int. J. Quantum Chem. 2010, 110, 1923.

    31. [31]

      (32) Qian, P.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2006, 22, 561.

    32. [32]

      [钱萍, 杨忠志. 物理化学学报, 2006, 22, 561.]

    33. [33]

      (33) Wang, G. H. Cluster Physics; Shanghai Scientific & Technical Publisher: Shanghai, 2003.

    34. [34]

      [王广厚. 团簇物理学. 上海: 上海科学技术出版社, 2003.]

    35. [35]

      (34) Yang, H.; Zhao, F.; Zhou, P.;Wang, Q. J.; Zhang, Y. E.; Hu,W. J. Journal of Xihua University: Natural Science Edition 2008, 27, 63.

    36. [36]

      [杨华, 赵飞, 周鹏, 王全军, 张艳娥, 胡维军. 西华大学学报(自然科学版), 2008, 27, 63.]


  • 加载中
    1. [1]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    12. [12]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    16. [16]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    17. [17]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

Metrics
  • PDF Downloads(1214)
  • Abstract views(3544)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return