Citation: OUYANG Mi, XIANG Wen-Qin, ZHANG Yu-Jian, JIN Yan-Xian, ZHANG Cheng. Synthesis, Characterization and Properties of Electron Donor-Acceptor Complexes Based on 9,9-Diarylfluorene[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1516-1524. doi: 10.3866/PKU.WHXB20110609 shu

Synthesis, Characterization and Properties of Electron Donor-Acceptor Complexes Based on 9,9-Diarylfluorene

  • Received Date: 13 January 2011
    Available Online: 22 April 2011

    Fund Project: 国家重点基础研究发展计划(973)前期专项(2010CB635108, 2011CB201608) (973)前期专项(2010CB635108, 2011CB201608) 浙江省自然科学基金(Y4090260) (Y4090260)中国博士后基金(20100471755)资助项目 (20100471755)

  • A series of fluorene-triphenylamine derivatives containing an electron donor-acceptor (D-A) structure based on 9,9-diarylfluorene was designed and synthesized. Their optical properties were investigated by UV-Vis spectroscopy and photoluminescence (PL) techniques in solution as well as in the solid state. The maximum PL emission wavelengths of the compounds ranged from 430 to 530 nm. A dual fluorescence phenomenon was observed in particular polar solvents and the relationship between emission properties and molecular structures was studied. The results reveal the existence of a charge transfer (CT) excited state in the molecules and the PL properties of these compounds depend on the structure of the compound and also on the polarity of the solvent. The molecular constitution of the compounds improves the hole-injection issues for fluorene-based materials because of the introduction of a triphenylamine group. Cyclic voltammetry (CV) shows that the highest occupied molecular orbital (HOMO) energy level of the compounds is located between -5.24 and -5.50 eV and it can be tailored by changing the electronegativity of the substituent group. Simultaneously, the spiro-skeleton molecular structure leads to an excellent glass transition temperature (192-206 °C) and it retains od morphological stability. The thermogravimetric (TG) curves of the compounds show a thermal-decomposition temperature of higher than 400 °C.

  • 加载中
    1. [1]

      1. Tang, C.W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.

    2. [2]

      2 Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.

    3. [3]

      3 Tsutsui, T.; Fujita, K. Adv. Mater. 2002, 14, 949.

    4. [4]

      4 Chen, J. S.; Ma, D. J. Luminescence 2007, 122-123, 636.

    5. [5]

      5 Okumoto, K.; Kanno, H.; Hamaa, Y.; Takahashi, H.; Shibata, K. Appl. Phys. Lett. 2006, 89, 063504.

    6. [6]

      6 Jou, J. H.; Chiang, P. H.; Lin, Y. P.; Chang, C. Y.; Lai, C. L. Appl. Phys. Lett. 2007, 91, 043504.

    7. [7]

      7 Wolfgang, R.; Barbara, B.; Klaus, D. Chemical Physics Letters 1999, 305, 8.

    8. [8]

      8 Yang, J. S.; Liau, K. L.;Wang, C. M.; Hwang, C. Y. J. Am. Chem. Soc. 2004, 126, 12325.

    9. [9]

      9 Chen, C. H.; Shi, J.; Tang, C.W.; Klubek, K. P. Thin Solid Films 2000, 363, 327.

    10. [10]

      10 Kong, S.; Xiao, L. X.; Liu, Y. L.; Chen, Z. J.; Qu, B.; ng, Q. H. New J. Chem. 2010, 34, 1994.

    11. [11]

      11 Tang, C.W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.

    12. [12]

      12 Bhaskar, A.; Ramakrishna, G.; Lu, Z. K.; Twieg, R.; Hales, J. M.; Hagan, J. D.; van Stryland, E.; odson T. J. Am. Chem. Soc. 2006, 128, 11840.

    13. [13]

      13 Wang, Y.; He, G. S.; Prasad, P. N.; Doodson, T. J. Am. Chem. Soc. 2005, 127, 10128.

    14. [14]

      14 Koene, B. E.; Loy, D. F.; Thompson, M. E. Chem. Mater. 1998, 10, 2235.

    15. [15]

      15 VanSlyke, S. A.; Chen, C. H.; Tang, C.W. Appl. Phys. Lett. 1996, 69, 2160.

    16. [16]

      16 Vestwever, H.; Rieβ,W. Synth. Met. 1997, 91, 181.

    17. [17]

      17 Wong, K. T.; Chien, Y. Y.; Chen, R. T.;Wang, C. F.; Lin, Y. T.; Chiang, H. H.; Hsieh, P. Y.;Wu, C. C.; Chou, C. H.; Su, Y. O.; Lee, G. H.; Peng, S. M. J. Am. Chem. Soc. 2002, 24, 11576.

    18. [18]

      18 Wu, C. C.; Liu, T. L.; Huang,W. Y.; Lin, Y. T.;Wong, K. T.; Chen, R. T.; Chen, Y. M.; Chien, Y. Y. J. Am. Chem. Soc. 2003, 125, 3710.

    19. [19]

      19 Zhang, C.; Zhang, Y. J.; Xiang,W. Q.; Hu, B.; Ouyang, M.; Ma, C. A. Chem. Lett. 2010, 39, 520.

    20. [20]

      20 Sukumaran, M.;Wolfgang, R. J. Phys. Chem. A 2006, 110, 28.

    21. [21]

      21 Adhikari, R. M.; Shah, B. K.; Palayan da, S. S.; Neckers, D. C. Langmuir 2009, 25, 2402.

    22. [22]

      22 Nikolaev, A. E.; Myszkiewicz, G.; Berden, G.; Meerts,W. L.; Pfanstiel, J. F.; Pratt, D.W. J. Chem. Phys. 2005, 122, 84309.

    23. [23]

      23 Adhikari, R. M.; Neckers, D. C.; Shah, B. K. J. Org. Chem. 2009, 74, 3341.

    24. [24]

      24 Zhang, C.; Yan, Y.; Chen, L. T.; Ma, C. A. Acta. Phys. -Chim. Sin. 2010, 26, 1075.

    25. [25]

      [张诚, 严妍, 陈丽涛, 马淳安. 物理化学学报, 2010, 26, 1075.]

    26. [26]

      25 Hu, R. R.; Erik, L.; Angélica, A. A.; Liu, J. Z.; Jacky,W. Y. L.; Herman, H. Y. S.; Ian, D.W.; Zhong, Y. C.; Kan, S.W. J. Phys. Chem. C 2009, 113, 15845.

    27. [27]

      26 Wang, P. F.;Wu, S. K. Acta Phys. -Chim. Sin. 1992, 8, 405.

    28. [28]

      [汪鹏飞, 吴世康. 物理化学学报, 1992, 8, 405.]

    29. [29]

      27 Wang, P. F.; Yue, Z. J.;Wu, S. K. Acta Phys. -Chim. Sin. 1994, 11, 1020.

    30. [30]

      [汪鹏飞, 岳志军, 吴世康. 物理化学学报, 1994, 11, 1020.]

    31. [31]

      28 Retting,W. Angew. Chem. Int. Edit. Engl. 1986, 25, 971.

    32. [32]

      29 Kong, Q.; Zhu, D.; Quan, Y.; Chen, Q.; Ding, J.; Lu, J.; Tao, Y. Chem. Mater. 2007, 19, 3309.


  • 加载中
    1. [1]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    8. [8]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    17. [17]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    18. [18]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    19. [19]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(1484)
  • Abstract views(2824)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return