Citation: LIU Yun-Hong, GAO Ya-Jun, WANG Fen-Ying, ZHU Tie-Min, ZHAO Jian-Wei. Molecular Dynamics Simulation of the Influence of Crystal Orientation on the Formation Probability of Silver Monoatomic Chains during Stretching[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1341-1345. doi: 10.3866/PKU.WHXB20110605 shu

Molecular Dynamics Simulation of the Influence of Crystal Orientation on the Formation Probability of Silver Monoatomic Chains during Stretching

  • Received Date: 6 December 2010
    Available Online: 19 April 2011

    Fund Project: 国家自然科学基金(20821063, 20873063, 51071084) (20821063, 20873063, 51071084) 国家重点基础研究发展计划(973) (2007CB936302, 2010CB732400) (973) (2007CB936302, 2010CB732400)江苏省自然科学基金(BK2010389)资助项目 (BK2010389)

  • We carried out molecular dynamics simulations using an embedded atom method to investigate the mechanical properties and structure deformation of silver nanowires during anisotropic stretching along the [100], [110], and [111] orientations. The simulation results show that the mechanical properties are different for the three crystal directions. Before breaking, linear atomic chains were observed for all three orientations. A total of 900 samples were investigated for a comprehensive understanding of the influence of orientation on the formation probability of linear atomic chains. Stretching along the [111] direction had a higher probability than that along the other two directions. This difference is explained by a stretching mechanism of the silver nanowire.

  • 加载中
    1. [1]

      (1) Rodrigues, V.; Ugarte, D. Eur. Phys. J. D 2001, 16, 395.

    2. [2]

      (2) Rodrigues, V.; Fuhrer, T.; Ugarte, D. Phys. Rev. Lett. 2000, 85, 4124.

    3. [3]

      (3) Ohnishi, H.; Kondo, Y.; Takayanagi, K. Nature 1998, 395, 780.

    4. [4]

      (4) Diao, J. K.; Gall, K.; Dunn, M. L. J. Mech. Phys. Solids 2004, 52, 1935.

    5. [5]

      (5) Diao, J.; Gall, K.; Dunn, M. L. Nano Lett. 2004, 4, 1863.

    6. [6]

      (6) Lin, J. S.; Ju, S. P.; Peng, Y. L.; Lee,W. J. Progress on Advanced Manufacture for Micro/Nano Technology 2005, Pt 1; 2 2006, 505-507, 385.

    7. [7]

      (7) Sato, K.; Huang,W. J.; Bohra, F.; Sivaramakrishnan, S.; Tedjasaputra, A. P.; Zuo, J. M. Phys. Rev. B 2007, 76, 144113.

    8. [8]

      (8) Nosé, S. J. Chem. Phys. 1984, 81, 511.

    9. [9]

      (9) Hoover,W. G. Phys. Rev. A 1985, 31, 1695.

    10. [10]

      (10) Rapaport, D. C. The Art of Molecular Dynamics Simulation. 2nd ed. 2004; Cambridge University: Cambridge, p 49.

    11. [11]

      (11) Verlet, L. Phys. Rev. 1967, 159, 98.

    12. [12]

      (12) Johnson, R. A. Phys. Rev. B 1988, 37, 6121.

    13. [13]

      (13) Johnson, R. A. Phys. Rev. B 1988, 37, 3924.

    14. [14]

      (14) Liu, Y. H.; Zhao, J.W.;Wang, F. Y. Phys. Rev. B 2009, 80, 115417.

    15. [15]

      (15) Liu, Y. H.;Wang, F. Y.; Zhao, J.W.; Jiang, L. Y.; Kiguchi, M.; Murakoshi, K. Phys. Chem. Chem. Phys. 2009, 11, 6514.

    16. [16]

      (16) Wang, D. X.; Zhao, J.W.; Hu, S.; Yin, X.; Liang, S.; Liu, Y. H.; Deng, S. Y. Nano Lett. 2007, 7, 1208.

    17. [17]

      (17) Bahn, S. R.; Jacobsen, K.W. Phys. Rev. Lett. 2001, 87, 266101.

    18. [18]

      (18) Rodrigues, V.; Ugarte, D. Phys. Rev. B 2001, 63, 073405.

    19. [19]

      (19) Takai, Y.; Kawasaki, T.; Kimura, Y.; Ikuta, T.; Shimizu, R. Phys. Rev. Lett. 2001, 87, 106105.

    20. [20]

      (20) Coura, P. Z.; Le as, S. B.; Moreira, A. S.; Sato, F.; Rodrigues, V.; Dantas, S. O.; Ugarte, D.; Galvao, D. S. Nano Lett. 2004, 4, 1187.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(1184)
  • Abstract views(2742)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return