Citation: CAO Yan-Li, DING Xiao-Long, LI Hong-Chen, YI Zhao-Guang, WANG Xiang-Fu, ZHU Jie-Jun, KAN Cai-Xia. Morphology-Controllable Noble Metal Nanoparticles: Synthesis, Optical Property and Growth Mechanism[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1273-1286. doi: 10.3866/PKU.WHXB20110604 shu

Morphology-Controllable Noble Metal Nanoparticles: Synthesis, Optical Property and Growth Mechanism

  • Received Date: 6 December 2010
    Available Online: 19 April 2011

    Fund Project: 国家自然科学基金(10704038, 51032002)资助项目 (10704038, 51032002)

  • In the past two decades, noble metal nanoparticles have been the focus of intensive research due to their unique properties. Researchers have made many efforts to synthesize noble metals with sizes in the nanometer scale and investigated their size- and shape-dependent properties. In this article, we firstly give a brief review on recent synthesis of noble metal particles. Then we mainly discuss their growth mechanism and the relationship between the shape and optical properties. Finally, we highlight a number of potential applications of noble metal materials in some fields.

  • 加载中
    1. [1]

      (1) Wang, F.; Li, C. H.; Sun, L. D.;Wu, H. S.; Ming, T.;Wang, J. F.; Yu, J. C.; Yan, C. H. J. Am. Chem. Soc. 2011, 133, 1106.

    2. [2]

      (2) Zhou, B. P.; Yu, G.; Ouyang, Y. J.; Si,W.W.; Qiao, L. J. Acta Phys. -Chim. Sin. 2010, 26, 237.

    3. [3]

      [周保平, 余刚, 欧阳跃军, 司薇薇, 乔利杰. 物理化学学报, 2010, 26, 237.]

    4. [4]

      (3) Sanvicens, N.; Marco, M. P. Trends in Biotechnology 2008, 26, 425.

    5. [5]

      (4) Zijlstra, P.; Chon, J.W. M.; Gu, N. Nature 2009, 459, 410.

    6. [6]

      (5) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.

    7. [7]

      (6) Anker, J. N.; Hall,W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nature Materials 2008, 7, 442.

    8. [8]

      (7) Millstone, J. E.; Hurst, S. J.; Métraux, G. S.; Cutler, J. I.; Mirkin, C. A. Small 2009, 5, 646.

    9. [9]

      (8) Liz-Marzán, L. M. Mater. Today 2004, 7, 26.

    10. [10]

      (9) Naumov, I. I.; Li, Z.; Bratkovsky, A. M. Appl. Phys. Lett. 2010, 96, 033105.

    11. [11]

      (10) Li, C.; Sato, R.; Kanehara, M.; Zeng, H.; Bando, Y.; Teranishi, T. Angew. Chem. Int. Edit. 2009, 48, 6883.

    12. [12]

      (11) Kan, C. X.; Zhu, X. G.;Wang, G. H. J. Phys. Chem. B 2006, 110, 4651.

    13. [13]

      (12) Tao, A. R.; Habas, S.; Yang, P. Small 2008, 4, 310.

    14. [14]

      (13) Mayer, K. M.; Hao, F.; Lee, S.; Nordlander, P.; Hafner, J. H. Nanotechnology 2010, 21, 255503.

    15. [15]

      (14) Xiong, Y.; Chen, J.;Wiley, B.; Xia, Y.; Yin, Y.; Li, Z. Y. Nano Lett. 2005, 5, 1237.

    16. [16]

      (15) Larsson, E. M.; Langhammer, C.; Zoric, I.; Kasemo, B. Science 2009, 326, 1091.

    17. [17]

      (16) Okamoto, H.; Imura, K. Progress in Surface Science 2009, 84, 199.

    18. [18]

      (17) Tirtha, S.; Basudeb, K. Solid State Sciences 2009, 11, 1044.

    19. [19]

      (18) Du, S. Y.; Li, Z. Y. Optics Letters 2010, 35, 3402.

    20. [20]

      (19) Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870.

    21. [21]

      (20) Ma, Z. F.; Si, G. L.; Chu, Y. M.; Chen, Y. Progress in Chemistry 2009, 21 (9), 1847.

    22. [22]

      [马占芳, 司国丽, 初一鸣, 陈颖. 化学进展, 2009, 21 (9), 1847.]

    23. [23]

      (21) Sau, T. K.; Rogach, A. L. Adv. Mater. 2010, 22, 1781.

    24. [24]

      (22) Yener, D. O.; Sindel, J.; Randall, C. A.; Adair, J. H. Langmuir 2002, 18, 8692.

    25. [25]

      (23) Wei, G.; Zhou, H.; Liu, Z.; Song, Y.;Wang, L.; Sun, L.; Li, Z. J. Phys. Chem. B 2005, 109, 8738.

    26. [26]

      (24) Zhang, J.; Liu, H.;Wang, Z.; Ming, N. Adv. Funct. Mater. 2007, 17, 3295.

    27. [27]

      (25) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.

    28. [28]

      (26) Jana, N. R.; Gearheart, L.; Murphy, C. Adv. Mater. 2001, 13, 1389.

    29. [29]

      (27) Wang, X. L.; Zeng, Y. F.; Bu, X. H. Chemistry 2005, NO. 10, 723.

    30. [30]

      [王秀丽, 曾永飞, 卜显和. 化学通报, 2005, NO. 10, 723.]

    31. [31]

      (28) Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068.

    32. [32]

      (29) Martin, C. R. Chem. Mater. 1996, 8, 1739.

    33. [33]

      (30) Smith, D. K.; Korgel, B. A. Langmuir 2008, 24 (3), 644.

    34. [34]

      (31) Yu, Y. Y.; Chang, S. S.; Lee, C. L.;Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.

    35. [35]

      (32) Chang, S. S.; Shih, C.W.; Chen, C. D.; Lai,W. C.;Wang, C. R. C. Langmuir 1999, 15, 701.

    36. [36]

      (33) Wirtz, M. ; Martin, C. R. Adv. Mater. 2003, 15, 455.

    37. [37]

      (34) Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. J. Phys. Chem. B 2006, 110, 2150.

    38. [38]

      (35) Wang, J. G.; Tian, M. L.; Mallouk, T. E.; Chan, M. H.W. Nano Lett. 2004, 4, 1313.

    39. [39]

      (36) Liu, X.; Huang, R.; Zhu, J. Chem. Mater. 2008, 20, 192.

    40. [40]

      (37) Kan, C. X.;Wang, C. S.; Zhu, J. J.; Li, H. C. J. Solid State Chem. 2010, 183, 858.

    41. [41]

      (38) Pastoriza-Santos, I.; Liz-Marzan, L. M. Nano Lett. 2002, 2, 903.

    42. [42]

      (39) Tsuji, T.; Higuchi, T. ; Tsuji, M. Chem. Lett. 2005, 34, 476.

    43. [43]

      (40) Zhang, J.; Li, S. Z.;Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Angew .Chem. Int. Edit. 2009, 48, 1.

    44. [44]

      (41) Tang, B.; Xu, S. P.; An, J.; Zhao, B.; Xu,W. Q. J. Phys. Chem. C 2009, 113 (17), 7025.

    45. [45]

      (42) Yang, S.; Zhang, T.; Zhang, L.;Wang, Q.; Zhang, R.; Ding, B. Nanotechnology 2006, 17, 5639.

    46. [46]

      (43) Zhang, Q.; Ge, J. P.; Pham, T.; ebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Angew. Chem. 2009, 121, 3568.

    47. [47]

      (44) Jia, H.; Xu,W.; An, J.; Li, D; Zhao, B. Spectrochim. Acta Part A 2006, 64, 956.

    48. [48]

      (45) Jin, R. C.; Cao, Y.W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901.

    49. [49]

      (46) He, Z. Y.; Zhao, Y. F. Fundamentals of Acoustics Theory. 1st ed.; National Defence Industry Press: Beijing, 1981; pp 436-448.

    50. [50]

      [何祚镛, 赵玉芳. 声学理论基础. 第一版. 北京: 国防工业出版社, 1981: 436-448.]

    51. [51]

      (47) Nagata, Y.; Mizukoshi, Y.; Okitsu, K.; Maeda, Y. Radiat. Res. 1996, 146, 333.

    52. [52]

      (48) Ma, J.; Tai, G. A.; Guo,W. L. Ultrasonics Sonochemistry 2010, 17, 534.

    53. [53]

      (49) Chen, H. J.; Kern, E.; Ziegler, C.; EychmüllerA. J. Phys. Chem. C 2009, 113, 19258.

    54. [54]

      (50) Li, C. C.; Cai,W. P.; Li, Y.; Hu, J. L.; Liu, P. S. J. Phys. Chem. B 2006, 110, 1546.

    55. [55]

      (51) Xia, Y.; Halas, N. J. MRS Bull. 2005, 30, 338.

    56. [56]

      (52) Mie, G. Ann. Physik 1908, 25, 377.

    57. [57]

      (53) Gans, R. Ann. Physik 1912, 37, 881.

    58. [58]

      (54) Liu, H. Y.; Chen, D.; Gao, J. N.; Tang, F. Q.; Ren, X. L. Progress in Chemistry 2006, 18, 889.

    59. [59]

      [刘惠玉, 陈东, 高继宁, 唐芳琼, 任湘菱. 化学进展, 2006, 18, 889.]

    60. [60]

      (55) Portale?s, H.; Pinna, N.; Pileni, M. P. J. Phys. Chem. A 2009, 113 (16), 4094.

    61. [61]

      (56) Ungureanu, C.; Rayavarapu, R. G.; Manohar, S.; Van Leeuwen, T. G. J. Appl. Phys. 2009, 105, 102032.

    62. [62]

      (57) Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J. M.; Siekkinen, A.; Xia, Y. N. J. Phys. Chem. B 2006, 110, 15666.

    63. [63]

      (58) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.

    64. [64]

      (59) Niu,W. X.; Li, Z. Y.; Shi, L. H.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J. A.; Xu, G. B. Cryst. Growth Des. 2008, 8 (12), 4442.

    65. [65]

      (60) Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Chem. Eur. J. 2005, 11, 454.

    66. [66]

      (61) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.

    67. [67]

      (62) Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.

    68. [68]

      (63) Wiley, B. J.; Chen, Y.; McLellan, J.; Xiong, Y.; Li, Z. Y.; Ginger, D.; Xia, Y. Nano Lett. 2007, 7, 1032.

    69. [69]

      (64) Kottmann, J. P.; Martin, O. J. F.; Smith, D. R.; Schultz, S. Phys. Rev. B 2001, 64, 235402.

    70. [70]

      (65) Ge, D. B.; Yan, Y. B. Finite-Difference Time-Domain Method for Electromagnetic Waves; Xidian University Publishing House: Xi′an, 2005.

    71. [71]

      [葛德彪, 闫玉波. 电磁波时域有限差分方法. 西安: 西安电子科技大学出版社, 2005.]

    72. [72]

      (66) Li, H. C.; Kan, C. X.; Yi, Z. G.; Ding, X. L.; Cao, Y. L.; Zhu, J. J. Journal of Nanomaterials 2010, 2010, 4.

    73. [73]

      (67) Cao, C.; Park, S.; Sim, S. J. J. Colloid Interface Sci. 2008, 322, 152.

    74. [74]

      (68) Marks, L. D. Rep. Prog. Phys. 1994, 57, 603.

    75. [75]

      (69) Tao, A. R.; Sinsermsuksakul, P.; Yang, P. Angew. Chem. Int. Edit. 2006, 45, 4597.

    76. [76]

      (70) Xiong, Y. J.; Xia, Y. N. Adv. Mater. 2007, 19, 3385.

    77. [77]

      (71) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153.

    78. [78]

      (72) Kan, C. X.; Zhu, J. J.; Zhu, X. G. J. Phys. D: Appl. Phys. 2008, 41, 155304.

    79. [79]

      (73) Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Adv. Funct. Mater. 2008, 18, 2005.

    80. [80]

      (74) Millstone, J. E.;Wei,W.; Jones, M. R.; Yoo, H.; Mirkin, C. A. Nano Lett. 2008, 8, 2526.

    81. [81]

      (75) Pastoriza-Santos, I.; Liz-Marzan, L. M. J. Mater. Chem. 2008, 18, 1724.

    82. [82]

      (76) Jiang, X.; Zeng, Q.; Yu, A. Langmuir 2007, 23, 2218.

    83. [83]

      (77) Zeng, Q.; Jiang, X.; Yu, A.; Lu, G. M. Nanotechnology 2007, 18, 035708.

    84. [84]

      (78) Lofton, C.; Sigmund,W. Adv. Funct. Mater. 2005, 15, 1197.

    85. [85]

      (79) Kan, C. X.;Wang, C. S.; Li, H. C.; Qi, J. S.; Shi, D. N. Small 2010, 16, 1768.

    86. [86]

      (80) Sun, Z. H.; Ni,W. H.; Yang, Z.; Kou, X. S.; Li, L.;Wang, J. F. Small 2008, 4, 1287.

    87. [87]

      (81) Murphy, C. J.; Sau, T. K.; le, A. M.; Orendorff, C. J.; Gao, J.; u, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857.

    88. [88]

      (82) Chen, J. Y.;Wiley, B. J.; Xia, Y. N. Langmuir 2007, 23, 4120.

    89. [89]

      (83) Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. J. Mater. Chem. 2002, 12, 1765.

    90. [90]

      (84) Hvolb?k, B.; Janssens, T. V.W.; Clausen, B. S.; Falsig, H.; Christensen, C. H.; N?rskov, J. K. Nano Today 2007, 2, 14.

    91. [91]

      (85) Xu, Y. P.; Tian, Z. J.; Lin, L.W. Chinese Journal of Catalysis 2004, 25, 331.

    92. [92]

      [徐云鹏, 田志坚, 林励吾. 催化学报, 2004, 25, 331.]

    93. [93]

      (86) Peng, S.; Lee, Y.;Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. Nano Research 2008, 1, 229.

    94. [94]

      (87) Chen, M. S.; odman, D.W. Chem. Soc. Rev. 2008, 37, 1860.

    95. [95]

      (88) rin, D. J.; Toste, F. D. Nature 2007, 446, 395.

    96. [96]

      (89) Yi, L. L.; Guo, H. G.; Tang, H. D. Industrial Catalysis 2003, 12, 44.

    97. [97]

      [易丽丽, 国海光, 唐浩东. 工业催化, 2003, 12, 44.]

    98. [98]

      (90) Kung, M. C.; Davis, R. J.; Kung, H. H. J. Phys. Chem. C 2007, 111 (32), 11767.

    99. [99]

      (91) Dahan, A.; Portnoy, M. J. Am. Chem. Soc. 2007, 129 (18), 5860.

    100. [100]

      (92) Chen, M. S.; Kumar, D.; Yi, C.W.; odman, D.W. Science 2005, 310, 291.

    101. [101]

      (93) Lu, L. H.; Sun, G. Y.; Zhang, H. J.;Wang, H. S.; Xi, S. Q.; Hu, J. Q.; Tian, Z. Q.; Chen, R. J. Mater. Chem. 2004, 14, 1005.

    102. [102]

      (94) Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. H. J. Am. Chem. Soc. 2007, 129 (22), 6974.

    103. [103]

      (95) Huang, X.; El-Sayed, I. H.; Qian,W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.

    104. [104]

      (96) Wijaya, A.; Hamad-Schifferli, K. Langmuir 2008, 24, 9966. (97) De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225.

    105. [105]

      (98) Park, J. H.; Von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. PNAS 2010, 107, 981.

    106. [106]

      (99) Liu, H.; Chen, D.; Tang, F.; Du, G.; Li, L.; Meng, X.; Liang, W.; Zhang, Y.; Teng, X.; Li, Y. Nanotechnology 2008, 19, 455101.

    107. [107]

      (100) Xu, R.; Ma, J.; Sun, X.; Chen, Z.; Jiang, X.; Guo, Z.; Huang, L.; Li, Y.;Wang, M.;Wang, C.; Liu, J.; Fan, X.; Gu, J.; Chen, X.; Zhang, Y.; Gu, N. Cell Res. 2009, 19, 1031.

    108. [108]

      (101) Bao, F.; Li, J. F.; Ren, B.; Yao, J. L.; Gu, R. A.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 345.

    109. [109]

      (102) An, J.;Wang, D. S.; Luo, Q. Z.; Li, X. Y.; Li, M. N.; Yuan, X. Y. Progress in Chemistry 2008, 20, 859.

    110. [110]

      [安静, 王德松, 罗青枝, 李雪艳, 李敏娜, 袁晓燕. 化学进展, 2008, 20, 859.]

    111. [111]

      (103) Zhang,W. Z.;Wang, G.W. New Chemical Materials 2003, 31 (2), 42.

    112. [112]

      [张文钲, 王广文. 化工新型材料, 2003, 31 (2), 42.]

    113. [113]

      (104) Han, X. X.; He,W.; Tian, X. Y.; Sun, X. N.; Han, S. S. Journal of Shandong Institute of Light Industry 2010, 24, 25.

    114. [114]

      [韩秀秀, 何文, 田修营, 孙夏囡, 韩姗姗. 山东轻工业学院学报, 2010, 24, 25.]

    115. [115]

      (105) Zhou, Z. Chinese Bulletin of Life Sciences 2009, 21, 461.

    116. [116]

      [周政. 生命科学, 2009, 21, 461.]

    117. [117]

      (106) Wang, N.; Xu, S. K.;Wang,W. X.; Progress in Chemistry 2007, 19 (2/3), 408.

    118. [118]

      [王楠, 徐淑坤, 王文星. 化学进展, 2007, 19 (2/3), 408. ]

    119. [119]

      (107) Sun, S. J.; Jiang, Z. L. Precious Metals 2005, 26 (3), 1.

    120. [120]

      [孙双娇, 将治良. 贵金属, 2005, 26 (3), 1.]

    121. [121]

      (108) Cheng, J. K. Analytical Chemistry in Single Cell; Science Press: Beijing, 2005.

    122. [122]

      (109) Xiao, G. N.; Cai, J. Y. Progress in Chemistry 2010, 22, 194.

    123. [123]

      [肖桂娜, 蔡继业. 化学进展, 2010, 22, 194.]

    124. [124]

      (110) Zhang, J. J.; Liu, Y. G.; Jiang, L. P.; Zhu, J. J. Electrochem. Commun. 2008, 10, 355.

    125. [125]

      (111) Zhu,W. L.; Zhou, Y.; Zhang, J. R. Talanta 2009, 80, 224.

    126. [126]

      (112) Shao, L.;Woo, K. C.; Chen, H. J.; Jin, Z.;Wang, J. F.; Lin, H. Q. ACS Nano 2010, 4, 3053.

    127. [127]

      (113) Ming, T.; Zhao, L.; Xiao, M.;Wang, J. F. Small 2010, 6, 2514.


  • 加载中
    1. [1]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    12. [12]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

Metrics
  • PDF Downloads(4578)
  • Abstract views(5007)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return