Citation: SUN Lei, BAI Fu-Quan, ZHANG Hong-Xing. Theoretical Investigation of Chemically Enhanced Mechanism of SERS Spectroscopy for Ag/MPH/TiO2 System[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1335-1340. doi: 10.3866/PKU.WHXB20110602 shu

Theoretical Investigation of Chemically Enhanced Mechanism of SERS Spectroscopy for Ag/MPH/TiO2 System

  • Received Date: 28 February 2011
    Available Online: 15 April 2011

    Fund Project: 国家自然科学基金(20973076, 21003057)资助项目 (20973076, 21003057)

  • A chemically enhanced mechanism of surface-enhanced Raman scattering (SERS) spectroscopy was investigated using density functional theory (DFT). We studied the Raman spectra of the Ag13/MPH and Ag13/MPH/TiO2 systems under 514.5 nm excitation. We found that the intensities of the non-totally symmetric vibration modes were selectively enhanced after TiO2 was introduced into the Ag13/MPH system. By analyzing the ground state and excited states of the charge transfer (CT) complex we found that the system gave a photoinduced CT state from Ag to the MPH-TiO2 complex when the excitation wavelength exceeded the optical absorption threshold (635 nm) of the MPH-TiO2 complex. The selective enhancement of the b2 modes in the SERS spectra probably originates from the Herzberg-Teller mechanism through the coupling of the corresponding modes with the CT transition. Our theoretical results support the experimental results and also define the adsorption threshold of the CT complex clearly while providing an intelligible physical explanation for the laser wavelength-dependent SERS phenomenon.

  • 加载中
    1. [1]

      (1) Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin- en, Q. Q.; Chen, G. Z.; Shin, D. M.; Yang, L. L.; Young, A. N.;Wang, M. D.; Nie, S. M. Nat. Biotechnol. 2008, 26, 83.

    2. [2]

      (2) Deckert, V.; George, M.W.; Umapathy, S. J. Raman Spectrosc. 2008, 39, 1508.

    3. [3]

      (3) Tian, Z. Q.; Ren, B.;Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463.

    4. [4]

      (4) Grabbe, E. S.; Buck, R. P. J. Am. Chem. Soc. 1989, 111, 8362.

    5. [5]

      (5) Nie, S. M.; Emory, S. R. Science 1997, 275, 1102.

    6. [6]

      (6) Haran, G. Accounts Chem. Res. 2010, 43, 1135.

    7. [7]

      (7) Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann,W. J. Phys.: Condens. Matter 1992, 4, 1143.

    8. [8]

      (8) Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. J. Phys. Chem. 1994, 98, 12702.

    9. [9]

      (9) Kim, N. J.; Lin, M. S.; Hu, Z. Q.; Li, H. Chem. Commun. 2009, 6246.

    10. [10]

      (10) Moskovits, M. J. Raman Spectrosc. 2005, 36, 485.

    11. [11]

      (11) Lombardi, J. R.; Birke, R. L. Accounts Chem. Res. 2009, 42, 734.

    12. [12]

      (12) Zhou, Q.; Li, X.W.; Fan, Q.; Zhang, X. X.; Zheng, J.W. Angew. Chem. Int. Edit. 2006, 45, 3970.

    13. [13]

      (13) Richter, A. P.; Lombardi, J. R.; Zhao, B. J. Phys. Chem. C 2010, 114, 1610.

    14. [14]

      (14) Zhao, B.; Xu,W. Q.; Ruan,W. D.; Han, X. X. Chem. J. Chin. Univ. 2008, 29, 2591.

    15. [15]

      [赵冰, 徐蔚青, 阮伟东, 韩晓霞. 高等学校化学学报, 2008, 29, 2591.]

    16. [16]

      (15) Hu, X. G.;Wang, T.;Wang, L.; Dong, S. J. J. Phys. Chem. C 2007, 111, 6962.

    17. [17]

      (16) Shi, J. Z.; Fang, J. H.; Mu, R.W.; Li, Y. L. Acta Phys. -Chim. Sin. 2006, 22, 135.

    18. [18]

      [施建珍, 方靖淮, 沐仁旺, 李雅丽. 物理化学学报, 2006, 22, 135.]

    19. [19]

      (17) Shegai, T.; Vaskevich, A.; Rubinstein, I.; Haran, G. J. Am. Chem. Soc. 2009, 131, 14390.

    20. [20]

      (18) Musumeci, A.; sztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Rajh, T. J. Am. Chem. Soc. 2009, 131, 6040.

    21. [21]

      (19) Li, J. F.; Hu, J.W.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2005, 21, 825.

    22. [22]

      [李剑锋, 胡家文, 任斌, 田中群. 物理化学学报, 2005, 21, 825.]

    23. [23]

      (20) Ji,W.; Xue, X. X.; Ruan,W. D.;Wang, C. X.; Ji, N.; Chen, L.; Li, Z. S.; Song,W.; Zhao, B.; Lombardi, J. R. Chem. Commun. 2010, 47, 2426.

    24. [24]

      (21) Lombardi, J. R.; Birke, R. L.; Lu, T. H.; Xu, J. J. Chem. Phys. 1986, 84, 4174.

    25. [25]

      (22) Lombardi, J. R.; Birke, R. L. J. Phys. Chem. C 2008, 112, 5605.

    26. [26]

      (23) Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. J. Phys. Chem. C 2009, 113, 18212.

    27. [27]

      (24) Sun, M.; Xu, H. X. ChemPhysChem 2009, 10, 392.

    28. [28]

      (25) Johannes, N.; Markus, R.; Carsten, K.; Bernd, A. H. J. Comput. Chem. 2002, 23, 895.

    29. [29]

      (26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2010.


  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    11. [11]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    15. [15]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    18. [18]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    19. [19]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(1151)
  • Abstract views(2840)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return