Citation: LI Miao-Miao, SHEN Rui-Qi, LI Feng-Sheng. Molecular Dynamics Simulation of Binding Energies, Mechanical Properties and Energetic Performance of the RDX/BAMO Propellant[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1379-1385. doi: 10.3866/PKU.WHXB20110601 shu

Molecular Dynamics Simulation of Binding Energies, Mechanical Properties and Energetic Performance of the RDX/BAMO Propellant

  • Received Date: 21 January 2011
    Available Online: 15 April 2011

    Fund Project: 江苏省博士后基金(0902018C)资助项目 (0902018C)

  • Molecular dynamics (MD) simulations were performed to investigate the well-known energetic material cyclotrimethylene trinitramine (RDX) crystal, 3,3′-bis-azidomethyl-oxetane (BAMO) and the RDX/BAMO propellant. The results show that the binding energies of RDX with BAMO on different crystalline surfaces change as follows: (010)>(100)>(001). The interactions between RDX and BAMO were analyzed by pair correlation functions g(r). The mechanical properties of the RDX/BAMO propellant, such as the elastic coefficients, modulus, Cauchy pressure, and Poisson's ratio, were obtained. We find that the mechanical properties are effectively improved by adding some BAMO polymer and the overall effect of BAMO on the three crystalline surfaces of RDX changes as follows: (100)>(001)>(010). The energetic performance of the RDX/BAMO propellant was also calculated and the results show that compared with the pure RDX crystal, the standard theoretical specific impulse (Isp) of the RDX/BAMO propellant decreases but it is still superior to that of the double base propellant.

  • 加载中
    1. [1]

      (1) Luca, L. D.; Cozzi, F.; Germiniasi, G. Combust. Flame 1999, 118, 248.

    2. [2]

      (2) Oyumi, Y.; Brill, T. B. Combust. Flame 1986, 65, 127.

    3. [3]

      (3) Chen, J. K.; Brill, T. B. Combust. Flame 1991, 87, 157.

    4. [4]

      (4) Miyazaki, T.; Kubota, N. Propell. Explos. Pyrotech. 1992, 17, 5.

    5. [5]

      (5) Oyumi, Y.; Inokami, K.; Yamazaki, K.; Matsumoto, K. Propell. Explos. Pyrotech. 1993, 18, 62.

    6. [6]

      (6) Shen, S. M.; Chiu, Y. S.;Wang, S.W.; Chen, S. I. Thermochim. Acta 1993, 221, 275.

    7. [7]

      (7) Kimura, E.; Oyumi, Y. Propell. Explos. Pyrotech. 1995, 20, 322.

    8. [8]

      (8) Kubota, N. J. Propul. Power 1995, 11, 677.

    9. [9]

      (9) Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S. J. Appl. Polym. Sci. 1995, 58, 579.

    10. [10]

      (10) Oyumi, Y.; Kimura, E.; Nagayama, K. Propell. Explos. Pyrotech. 1998, 23, 123.

    11. [11]

      (11) Pisharath, S.; Ang, H. G. Polym. Degrad. Stabil. 2007, 92, 1365.

    12. [12]

      (12) Zhai, J.; Yang, R.; Li, J. Combust. Flame 2008, 154, 473.

    13. [13]

      (13) Material Studio 3.0 discover/Accelrys; CA: San Die , 2004.

    14. [14]

      (14) Choi, C. S.; Prince, E. Acta Crystallogr. B 1972, 28, 2857.

    15. [15]

      (15) Sun, H.; Ren, P.; Fried, J. R. Comput. Theor. Polym. Sci. 1998, 8, 229.

    16. [16]

      (16) Bunte, S.W.; Sun, H. J. Phys. Chem. B 2000, 104, 2477.

    17. [17]

      (17) Yang, J.; Ren, Y.; Tian, A. m.; Sun, H. J. Phys. Chem. B 2000, 104, 4951.

    18. [18]

      (18) Mcquaid, M. J.; Sun, H.; Rigby, D. J. Comput. Chem. 2004, 25, 61.

    19. [19]

      (19) Sun, H. J. Phys. Chem.B 1998, 102, 7338.

    20. [20]

      (20) Zhu,W.; Xiao, J.; Zhu,W.; Xiao, H. J. Hazard. Mater. 2009, 164, 1082.

    21. [21]

      (21) Xu, X. J.; Xiao, H. M.; Xiao, J. J.; Zhu,W.; Huang, H.; Li, J. S. J. Phys. Chem. B 2006, 110, 7203.

    22. [22]

      (22) Qiu, L.; Zhu,W. H.; Xiao, J. J.; Zhu,W.; Xiao, H. M.; Huang, H.; Li, J. S. J. Phys. Chem. B 2007, 111, 1559.

    23. [23]

      (23) Zhu,W.;Wang, X.; Xiao, J.; Zhu,W.; Sun, H.; Xiao, H. J. Hazard. Mater. 2009, 167, 810.

    24. [24]

      (24) Xiao, J.; Huang, H.; Li, J.; Zhang, H.; Zhu,W.; Xiao, H. J. Mol. Struct. -Theothem 2008, 851, 242.

    25. [25]

      (25) Qiu, L.; Xiao, H. J. Hazard. Mater. 2009, 164, 329.

    26. [26]

      (26) Andersen, H. C. J. Chem. Phys. 1980, 72, 2384.

    27. [27]

      (27) Weiner, J. H. Statistical Mechanics of Elasticity; JohnWiley: New York, 2002.

    28. [28]

      (28) Pugh, S. F. Philos. Mag. Series 7 1954, 45, 823.

    29. [29]

      (29) Weiner, J. H. Statistical Mechanics of Elasticity; JohnWiley: New York, 1983.

    30. [30]

      (30) Tian, D.; Liu, J. Energetics Calculation of Chemical Propellants; Henan Scientific and Technical Publishers: Zhengzhou, 1999.


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    15. [15]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    16. [16]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    17. [17]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(1344)
  • Abstract views(2324)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return