Citation: SHI Jin-Jie, SUN Wei. Effect of Benzotriazole as Corrosion Inhibitor for Reinforcing Steel in Cement Mortar[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1457-1466. doi: 10.3866/PKU.WHXB20110528 shu

Effect of Benzotriazole as Corrosion Inhibitor for Reinforcing Steel in Cement Mortar

  • Received Date: 22 December 2010
    Available Online: 15 April 2011

    Fund Project: 国家重点基础研究发展计划项目(973) (2009CB623203)与东南大学优秀博士学位论文基金(YBJJ1017)资助 (973) (2009CB623203)与东南大学优秀博士学位论文基金(YBJJ1017)

  • The effects of benzotriazole (BTA) on the corrosion behavior of reinforcing steel in mortar specimens were studied by corrosion potential (Ecorr), polarization resistance (Rp), and resistivity of mortar cover (ρc). Additionally, the corrosion inhibiting efficiencies of BTA and NaNO2 (SN) were compared after exposure to 3.5% (w) NaCl solution for 360 d. Three samples with different surface conditions (as-received reinforcing steel, pre-rusted reinforcing steel, and chloride-admixed in mortar) were studied using electrochemical impendence spectroscopy (EIS), cyclic polarization (CP) and cyclic voltammetry (CV). Environmental scanning electron microscopy (ESEM) and energy dispersive spectroscopy (EDS) were employed to obtain the mechanism of the inhibiting efficiency of BTA in cementitious materials. The results show that under all three conditions, BTA strongly reduces the uniform corrosion rates of reinforcing steels in mortar with inhibiting efficiencies better than those of SN. On the other hand, the pitting corrosion resistance of specimen with BTA is slightly lower than that with SN for the as-received and pre-rusted reinforcing steels. However, when chlorides were pre-mixed in mortar, BTA showed better protection against pitting corrosion. In previous investigations, BTA was found to form a complex film on the surface of the reinforcing steel which restrained the depassivation of the passive film by Cl-. The results of ESEM/EDS indicate that BTA facilitates more Ca-rich C-S-H gel in the mortar matrix, which may refine the microstructure of the reinforcing steel/mortar interface. The compact microstructure delays the transport of Cl- towards the steel surface, which protects the reinforcing steel effectively. The long-term (360 d) strength of the mortar specimen is not affected obviously when BTA is used in appropriate proportions.

  • 加载中
    1. [1]

      (1) Soylev, T. A.; Richardson, M. G. Constr. Build. Mater. 2008, 22, 609.

    2. [2]

      (2) Hansson, C. M.; Mammoliti, L.; Hope, B. B. Cem. Concr. Res. 1998, 28, 1775.

    3. [3]

      (3) Troconis de Rincon, O.; Perez, O.; Paredes, E.; Caldera, Y.; Urdaneta, C.; Sandoval, I. Cem. Concr. Compos. 2002, 24, 79.

    4. [4]

      (4) Abd El Haleem, S. M.; Abd ElWanees, S.; Abd El Aal, E. E.; Diab, A. Corros. Sci. 2010, 52, 292.

    5. [5]

      (5) Zhou, X.; Yang, H. Y.;Wang, F. H. Corrosion Science and Protection Technology 2010, 22, 343.

    6. [6]

      [周欣, 杨怀玉, 王福会. 腐蚀科学与防护技术, 2010, 22, 343.]

    7. [7]

      (6) Dhouibi, L.; Triki, E.; Salta, E.; Rodrigues, P.; Raharinaivo, A. Mater. Struct. 2003, 36, 530.

    8. [8]

      (7) Ormellese, M.; Lazzari, L.; idanich, S.; Fumagalli, G.; Brenna, A. Corrosion Sci. 2009, 51, 2959.

    9. [9]

      (8) Zhen, L. G.; Yang, H. Y. Acta Phys. -Chim. Sin. 2010, 26, 2354.

    10. [10]

      [郑雷刚, 杨怀玉. 物理化学学报, 2010, 26, 2354.]

    11. [11]

      (9) Sawada, S.; Page, C. L.; Page, M. M. Corrosion Sci. 2005, 47, 2063.

    12. [12]

      (10) Kosec, T.; Milosev, I.; Pihlar, B. Appl. Surf. Sci. 2007, 253, 8863.

    13. [13]

      (11) Niu, L.; Lin, H. C.; Cao, C. N.; Song, G. L. Acta Phys. -Chim. Sin. 1997, 13, 802.

    14. [14]

      [牛林, 林海潮, 曹楚南, 宋光铃. 物理化学学报, 1997, 13, 802.]

    15. [15]

      (12) Sheban, M.; Abu-Dalo, M.; Ababneh, A. Anti-Corros. Methods Mater. 2007, 54, 135.

    16. [16]

      (13) Mennucci, M. M.; Banczek, E. P.; Rodrigues, P. R. P.; Costa, I. Cem. Concr. Compos. 2009, 31, 418.

    17. [17]

      (14) Shi, J. J.; Sun,W. Journal of Functional Materials 2010, 41, 2147.

    18. [18]

      [施锦杰, 孙伟. 功能材料, 2010, 41, 2147.]

    19. [19]

      (15) Qiao, B.; Du, R. G.; Chen,W.; Zhu, Y. F.; Lin, C. J. Acta Metallurgica Sinica 2010, 46, 245.

    20. [20]

      [乔冰, 杜荣归, 陈雯, 朱燕峰, 林昌健. 金属学报, 2010, 46, 245.]

    21. [21]

      (16) Liu, J. Z.; Xing, F.; He, Z. M.; Ding, Z. Journal of the Chinese Ceramic Society 2010, 38, 615.

    22. [22]

      [柳俊哲, 邢锋, 贺智敏, 丁铸. 硅酸盐学报, 2010, 38, 615.]

    23. [23]

      (17) nzalez, J. A.; Miranda, J. M.; Feliu, S. Corrosion Sci. 2004, 46, 2467.

    24. [24]

      (18) Poursaee, A.; Hansson, C. M. Cem. Concr. Res. 2009, 39, 391.

    25. [25]

      (19) Andrade, C.; Alonso, C. Constr. Build. Mater. 1996, 10, 315.

    26. [26]

      (20) Ghods, P.; Is r, O. B.; McRae, G. A.; Gu, G. P. Corrosion Sci. 2010, 52, 1649.

    27. [27]

      (21) Vedalakshmi, R.; Saraswathy, V.; Song, H.W.; Palaniswamy, N. Corrosion Sci. 2009, 51, 1299.

    28. [28]

      (22) Eichler, T.; Isecke, B.; Ba?ler, R. Mater. Corros. 2009, 60, 119.

    29. [29]

      (23) Hu, R. G.; Huang, R. S.; Du, R. G.; Lin, C. J. Acta Phys. -Chim. Sin. 2003, 19, 46.

    30. [30]

      [胡融刚, 黄若双, 杜荣归, 林昌健. 物理化学学报, 2003, 19, 46.]

    31. [31]

      (24) Vedalakshmi, R.; Palaniswamy, N. Mag. Concr. Res. 2010, 62, 177.

    32. [32]

      (25) Pech-Canul, M. A.; Castro, P. Cem. Concr. Res. 2002, 32, 491.

    33. [33]

      (26) Trabanelli, G.; Monticelli, C.; Grassi, V.; Frignani, A. Cem. Concr. Res. 2005, 35, 1804.

    34. [34]

      (27) Etteyeb, N.; Sanchez, M.; Dhouibi, L.; Alonso, C.; Andrade, C.; Triki, E. Corros. Eng. Sci.Technol. 2006, 41, 336.

    35. [35]

      (28) Valcarce, M. B.; Vázquez, M. Mater. Chem. Phys. 2009, 115, 313.

    36. [36]

      (29) Saremi, M.; Mahallati, E. Cem. Concr. Res. 2002, 32, 1915.

    37. [37]

      (30) Li, L.; Sagüés, A. A. Corrosion 2002, 58, 305.

    38. [38]

      (31) Song, H.W.; Saraswathy, V.; Muralidharan, S.; Thangavel, K. J. Appl. Electrochem. 2008, 38, 445.

    39. [39]

      (32) Alonso-Falleiros, N.; Hakim, A.;Wolynec, S. Corrosion 1999, 55, 443.

    40. [40]

      (33) Qian, S. Y.; Cusson, D. Cem. Concr. Compos. 2004, 26, 217.

    41. [41]

      (34) Flis, J.; Pickering, H.W.; Osseo-Asare, K. Electrochim. Acta 1998, 43, 1921.

    42. [42]

      (35) Andrade, C.; Keddam, M.; Novoa, X. R.; Perez, M. C.; Rangel, C. M.; Takenouti, H. Electrochim. Acta 2001, 46, 3905.

    43. [43]

      (36) Hinatsu, J. T.; Graydon,W. F.; Foulkes, F. R. J. Appl. Electrochem. 1990, 20, 841.

    44. [44]

      (37) Foulkes, F. R.; McGrath, P. Cem. Concr. Res. 1999, 29, 873.

    45. [45]

      (38) Sa e-Crentsil, K. K.; Glasser, F. P. Corrosion 1993, 49, 457.

    46. [46]

      (39) Sa e-Crentsil, K. K.; Jin, S. X.; Glasser, F. P. Mag. Concr. Res. 1991, 43, 275.

    47. [47]

      (40) Luo, L.; De Schutter, G. Mater. Struct. 2008, 41, 1571.

    48. [48]

      (41) Richardson, G.; Groves, G.W. J. Mater. Sci. 1993, 28, 265.

    49. [49]

      (42) Shi, X. M.; Yang, Z. X.; Nguyen, T. A.; Suo, Z. Y.; Avci, R.; Song, S. Z. Sci. China Tech. Sci. 2009, 52, 52.

    50. [50]

      (43) Wang, S. X.; Lin,W.W.; Zhang, J. Q.; Fang, Z. K. Chinese Society for Corrosion and Protection 2000, 20, 15.

    51. [51]

      [王胜先, 林薇薇, 张鉴清, 方振逵. 中国腐蚀与防护学报, 2000, 20, 15.]

    52. [52]

      (44) Monticelli, C.; Frignani, A.; Trabanelli, G. J. Appl. Electrochem. 2002, 32, 527.

    53. [53]

      (45) Elsener, B. Corrosion Inhibitors for Steel in Concrete: State of the Art Report.; Maney Publishing: London, 2001, p 35.

    54. [54]

      (46) Thomas, N. L. J. Mater. Sci., 1987, 22, 3328.

    55. [55]

      (47) de Schutter, G.; Luo, L. Constr. Build. Mater. 2004, 18, 483.


  • 加载中
    1. [1]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    2. [2]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    6. [6]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    7. [7]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    8. [8]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    14. [14]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(1006)
  • Abstract views(2686)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return