Citation: YU Chao, QIU Ke-Qiang, CHEN Qi-Yuan. Thermodynamic Analysis of Silicothermic Reduction Zinc Oxide in Vacuum[J]. Acta Physico-Chimica Sinica, ;2011, 27(06): 1312-1318. doi: 10.3866/PKU.WHXB20110524 shu

Thermodynamic Analysis of Silicothermic Reduction Zinc Oxide in Vacuum

  • Received Date: 13 December 2010
    Available Online: 11 April 2011

    Fund Project: 国家重点基础研究发展计划项目(973) (2007CB613601)资助 (973) (2007CB613601)

  • The Gibbs free energy of a vacuum silicothermic reduction for the production of metallic zinc was calculated and analyzed thermodynamically. The results show that reducing ZnO by silicon is thermodynamically possible at 1100-1500 K. However, about 50%(w) of the ZnO was not reduced because the SiO2 generated by the reduction of ZnO with silicon can react with ZnO and produce 2ZnO·SiO2. Upon the addition of CaO, it can react with SiO2 before ZnO to inhibit the production of 2ZnO·SiO2 and ZnO can be reduced to Zn completely. Slagging reactions and the vacuum technique can be used to lower the Gibbs free energy of the reduction reaction. We carried out experiments to reduce ZnO from hot dip galvanizing ash using silicon. The results showed that the reduction efficiency of ZnO was 92.81% and the metal Zn obtained was well crystallized under the following experimental conditions: a temperature of 1448 K, a vacuum reduction time of 120 min, and a residual gas pressure of 20 Pa. X-ray diffraction (XRD)analysis indicated that the main compound in the slag was 2CaO·SiO2.

  • 加载中
    1. [1]

      (1) Ren, X. L.; Wei, Q. F.; Hu, S. R.; Wei, S. J. J. Hazard. Mater. 2010, 181, 908.

    2. [2]

      (2) Carrera, J. A.; Bringas, E.; Román, M. F.; Ortiz, I. J. Membr. Sci. 2009, 326, 672.

    3. [3]

      (3) Díaz, G.; Martín, D. Resour. Conserv. Recy. 1994, 10, 43.

    4. [4]

      (4) Cinar, F.; Sahin, B. D.; Yücel, O. Scand. J. Metall. 2000, 29, 224.

    5. [5]

      (5) Gupta, M. K.; Gupta, B. L.; Raghavan, R. Hydrometallurgy 1989, 22, 379.

    6. [6]

      (6) Mei, G. G.; Wang, D. R.; Zhou, J. Y.; Wang, H. Hydrometallurgy of Zinc; Central South University Press: Changsha, 2001; pp 151-260.

    7. [7]

      [梅光贵, 王德润, 周敬元, 王 辉. 湿法冶金学. 长沙: 中南大学出版社, 2001: 151-260.]

    8. [8]

      (7) Dvo?ák, P.; Jandová, J. Hydrometallurgy 2005, 77, 29.

    9. [9]

      (8) Rabah, M. A.; El-Sayed, A. S. Hydrometallurgy 1995, 37, 23.

    10. [10]

      (9) Mei, Z.; Peng, R. Q. Metallurgy of Lead and Zinc; Science Press: Beijing, 2003; pp 575-586.

    11. [11]

      [梅 炽, 彭容秋. 铅锌冶金学. 北京: 科学出版社, 2003: 575-586.]

    12. [12]

      (10) Masud, A.; Abdel, L. Miner. Eng. 2002, 15, 945.

    13. [13]

      (11) Marcus, C.; Zevenbergen, L. A. Nucl. Instrum. Methods Phys. Res. Sect. A 1999, 438, 30.

    14. [14]

      (12) Xiong, L. Z.; Chen, Q. Y.; Yin, Z. L.; Zhang, P. M. The Chinese Journal of Process Engineering 2010, 10, 133.

    15. [15]

      [熊利芝, 陈启元, 尹周澜, 张平民. 过程工程学报, 2010, 10, 133.]

    16. [16]

      (13) Ye, D. L.; Hu, J. H. The Practical Thermodynamics Data Book of Inorganic Substances, 2nd ed.; Metallurgical Industry Press: Beijing, 2002; pp 205-1912.

    17. [17]

      [叶大伦, 胡建华. 实用无机物热力学数据手册. 第2版. 北京: 冶金工业出版社, 2002: 205-1912.]

    18. [18]

      (14) Kubaschewski, O.; Alcock, C. B. Metallurgical Thermochemistry, 5th ed.; Pergamon Press: Oxford, 1979; pp 268-326.


  • 加载中
    1. [1]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    7. [7]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    8. [8]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    9. [9]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    18. [18]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    19. [19]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(1169)
  • Abstract views(2376)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return